QEMUKVM 虚拟机实例demo以及RISCV上KVM的实现分析

2024-02-15 11:59

本文主要是介绍QEMUKVM 虚拟机实例demo以及RISCV上KVM的实现分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KVM(Kernel Virtual Machine)是基于Linux内核的开源的虚拟化解决方案,KVM从linux-2.6.20版本开始被合入kernel主分支维护,成为linux的重要模块之一。KVM本身能够提供CPU虚拟化和内存虚拟化等部分功能,而其它设备的虚拟化和虚拟机的管理工作,则需要依靠QEMU完成,在KVM虚拟化环境中,一个虚拟机就是一个传统的Linux 进程,运行在Qemu-KVM进程的地址空间,KVM和QEMU相结合,一起向用户提供完整的平台虚拟化。在KVM虚拟化方案中,通过在Linux内核中增加虚拟化管理模块,直接使用linux非常成熟和完善的模块和机制。例如内存管理和进程调度等,从而使Linux内核成为能够支持虚拟机运行的hypervisor.

本实验原理是将一个精简内核注入KVM虚拟机运行,当KVM虚拟机执行到IO指令的时候,借助用户态的MINI QEMU将信息打印出来。

主机环境:

存在/dev/kvm设备节点:

kvm is a misc char device in kernel:

KVM function enabled by CONFIG_KVM in kernel ,you can compile it to kvm.ko(CONFIG_KVM=m) or builtin the kernel (CONFIG_KVM=y), also ,you should enable with  CONFIG_KVM_INTEL item setting m or y, in order to support arch specific instrucdtions support for KVM.

KVM is not related with paravirtualiztion configuration CONFIG_XEN ,so you can disable KVM

but use KVM without any trouble.

start

首先编写一个精简内核,代码如下:

start:
mov   $0x48, %al
outb  %al,   $0xf1 
mov   $0x65, %al
outb  %al,   $0xf1
mov   $0x6c, %al
outb  %al,   $0xf1
mov   $0x6c, %al
outb  %al,   $0xf1
mov   $0x6f, %al
outb  %al,   $0xf1
mov   $0x0a, %al
outb  %al,   $0xf1
hlt

编译:

as -32 test.S -o test.o
objcopy -O binary test.o test.bin

 将test.bin转换为数组指令

(base) caozilong@caozilong-Vostro-3268:~/Workspace/kvm$ xxd -i test.bin 
unsigned char test_bin[] = {0xb0, 0x48, 0xe6, 0xf1, 0xb0, 0x65, 0xe6, 0xf1, 0xb0, 0x6c, 0xe6, 0xf1,0xb0, 0x6c, 0xe6, 0xf1, 0xb0, 0x6f, 0xe6, 0xf1, 0xb0, 0x0a, 0xe6, 0xf1,0xf4
};
unsigned int test_bin_len = 25;
(base) caozilong@caozilong-Vostro-3268:~/Workspace/kvm$

开发用户态QEMU

代码中的code数组即是上面转换为字符数组的内核指令。

#include <err.h>
#include <fcntl.h>
#include <linux/kvm.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>int main(void)
{int kvm, vmfd, vcpufd, ret;unsigned char code[] = {0xb0, 0x48, 0xe6, 0xf1, 0xb0, 0x65, 0xe6, 0xf1, 0xb0, 0x6c, 0xe6, 0xf1,0xb0, 0x6c, 0xe6, 0xf1, 0xb0, 0x6f, 0xe6, 0xf1, 0xb0, 0x0a, 0xe6, 0xf1,0xf4};uint8_t *mem;struct kvm_sregs sregs;size_t mmap_size;struct kvm_run *run;// 获取 kvm 句柄kvm = open("/dev/kvm", O_RDWR | O_CLOEXEC);if (kvm == -1){err(1, "/dev/kvm");}// 确保是正确的 API 版本ret = ioctl(kvm, KVM_GET_API_VERSION, NULL);if (ret == -1)err(1, "KVM_GET_API_VERSION");if (ret != 12)errx(1, "KVM_GET_API_VERSION %d, expected 12", ret);// 创建一虚拟机vmfd = ioctl(kvm, KVM_CREATE_VM, (unsigned long)0);if (vmfd == -1)err(1, "KVM_CREATE_VM");// 为这个虚拟机申请内存,并将代码(镜像)加载到虚拟机内存中mem = mmap(NULL, 0x1000, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);if (!mem)err(1, "allocating guest memory");memcpy(mem, code, sizeof(code));// 为什么从 0x1000 开始呢,因为页表空间的前4K是留给页表目录struct kvm_userspace_memory_region region = {.slot = 0,.guest_phys_addr = 0x1000,.memory_size = 0x1000,.userspace_addr = (uint64_t)mem,};// 设置 KVM 的内存区域ret = ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &region);if (ret == -1)err(1, "KVM_SET_USER_MEMORY_REGION");// 创建虚拟CPUvcpufd = ioctl(vmfd, KVM_CREATE_VCPU, (unsigned long)0);if (vcpufd == -1)err(1, "KVM_CREATE_VCPU");// 获取 KVM 运行时结构的大小ret = ioctl(kvm, KVM_GET_VCPU_MMAP_SIZE, NULL);if (ret == -1)err(1, "KVM_GET_VCPU_MMAP_SIZE");mmap_size = ret;if (mmap_size < sizeof(*run))errx(1, "KVM_GET_VCPU_MMAP_SIZE unexpectedly small");// 将 kvm run 与 vcpu 做关联,这样能够获取到kvm的运行时信息run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpufd, 0);if (!run)err(1, "mmap vcpu");// 获取特殊寄存器ret = ioctl(vcpufd, KVM_GET_SREGS, &sregs);if (ret == -1)err(1, "KVM_GET_SREGS");// 设置代码段为从地址0处开始,我们的代码被加载到了0x0000的起始位置sregs.cs.base = 0;sregs.cs.selector = 0;// KVM_SET_SREGS 设置特殊寄存器ret = ioctl(vcpufd, KVM_SET_SREGS, &sregs);if (ret == -1)err(1, "KVM_SET_SREGS");// 设置代码的入口地址,相当于32位main函数的地址,这里16位汇编都是由0x1000处开始。// 如果是正式的镜像,那么rip的值应该是类似引导扇区加载进来的指令struct kvm_regs regs = {.rip = 0x1000,.rax = 2,    // 设置 ax 寄存器初始值为 2.rbx = 2,    // 同理.rflags = 0x2,   // 初始化flags寄存器,x86架构下需要设置,否则会粗错};ret = ioctl(vcpufd, KVM_SET_REGS, &regs);if (ret == -1)err(1, "KVM_SET_REGS");// 开始运行虚拟机,如果是qemu-kvm,会用一个线程来执行这个vCPU,并加载指令while (1) {// 开始运行虚拟机ret = ioctl(vcpufd, KVM_RUN, NULL);if (ret == -1)err(1, "KVM_RUN");// 获取虚拟机退出原因switch (run->exit_reason) {case KVM_EXIT_HLT:puts("KVM_EXIT_HLT");return 0;// 汇编调用了 out 指令,vmx 模式下不允许执行这个操作,所以// 将操作权切换到了宿主机,切换的时候会将上下文保存到VMCS寄存器// 后面CPU虚拟化会讲到这部分// 因为虚拟机的内存宿主机能够直接读取到,所以直接在宿主机上获取到// 虚拟机的输出(out指令),这也是后面PCI设备虚拟化的一个基础,DMA模式的PCI设备case KVM_EXIT_IO:putchar(*(((char *)run) + run->io.data_offset));break;case KVM_EXIT_FAIL_ENTRY:errx(1, "KVM_EXIT_FAIL_ENTRY: hardware_entry_failure_reason = 0x%llx",(unsigned long long)run->fail_entry.hardware_entry_failure_reason);case KVM_EXIT_INTERNAL_ERROR:errx(1, "KVM_EXIT_INTERNAL_ERROR: suberror = 0x%x", run->internal.suberror);default:errx(1, "exit_reason = 0x%x", run->exit_reason);}}return 0;
}

这篇关于QEMUKVM 虚拟机实例demo以及RISCV上KVM的实现分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711338

相关文章

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同