Talk | KDD‘23 Best Paper 港中文孙相国:All in One - 提示学习在图神经网络中的探索

2024-02-14 22:50

本文主要是介绍Talk | KDD‘23 Best Paper 港中文孙相国:All in One - 提示学习在图神经网络中的探索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本期为TechBeat人工智能社区532线上Talk!

北京时间9月20(周三)20:00香港中文大学博后研究员—孙相国的Talk已准时在TechBeat人工智能社区开播!

他与大家分享的主题是: 提示学习在图神经网络中的探索,他分享了提示学习基本概念,并介绍了他的团队提出的图模型多任务提示方法。

Talk·信息

主题:提示学习在图神经网络中的探索

嘉宾:香港中文大学博后研究员  孙相国

时间:北京时间 9月20日(周三)20:00

地点:TechBeat人工智能社区

点击下方链接,即可观看视频!

TechBeatTechBeat是荟聚全球华人AI精英的成长社区,每周上新来自顶尖大厂、明星创业公司、国际顶级高校相关专业在读博士的最新研究工作。我们希望为AI人才打造更专业的服务和体验,加速并陪伴其成长。icon-default.png?t=N7T8https://www.techbeat.net/talk-info?id=810

Talk·介绍

近期,“预训练和微调”已经成为许多图任务的标准工作流程,因为它可以利用通用图知识来缓解每个应用程序中图注释的缺失。然而,涉及节点级别、边级别和图级别的图任务千差万别,导致预训练的假设往往与这些多样的任务不兼容。这种差距甚至可能导致对特定应用程序的“负迁移”,从而导致结果不佳。

受自然语言处理(NLP)中提示学习的启发,该方法在利用先前知识处理各种NLP任务方面表现出显著的有效性,我们研究了在图领域填补预训练模型和各种图任务之间差距的提示主题。我们提出了一种新颖的图模型多任务提示方法。

具体来说,我们首先通过提示标记、标记结构和插入模式统一了图提示和语言提示的格式。通过这种方式,NLP中的提示思想可以无缝地引入到图领域。然后,为了进一步缩小各种图任务与最先进的预训练策略之间的差距,我们进一步研究了各种图应用程序的任务空间,并将下游问题重新定义为图级任务。随后,我们引入元学习(meta learning)来高效地学习图的多任务提示的更好初始化,以使我们的提示框架在不同任务之间更加可靠和通用。我们进行了大量实验证明了我们方法的优越性。

Talk大纲

1.自然语言大模型的预训练和图预训练

2.提示学习基本概念

3.图提示学习

4.评价与实验

Talk·预习资料

论文链接:

https://arxiv.org/pdf/2307.01504.pdf

Talk·提问交流

在Talk界面下的【交流区】参与互动!留下你的打call🤟和问题🙋,和更多小伙伴们共同讨论,被讲者直接翻牌解答!

你的每一次贡献,我们都会给予你相应的i豆积分,还会有惊喜奖励哦!

Talk·嘉宾介绍

孙相国

香港中文大学博后研究员

孙相国博士现任香港中文大学博后研究员。他被中国人工智能学会(CAAI)评选为2023年度“社会计算青年学者新星”。他于2022年获得东南大学计算机博士学位,其博士学位论文获得东南大学优秀博士论文称号。在此之前,他先后在微软亚洲研究院、杭州之江实验室等科研单位进行访问研究。于2019年至2021年赴澳大利亚昆士兰大学数据科学中心进行为期两年的联合博士培养。他广泛结合心理学、社会学,和计算机科学,完成了很多新颖的在线社交网络交叉学科研究工作,包括社交网络行为分析、网络异常检测、图学习等等。他在国际顶尖数据挖掘类会议和期刊如SIGKDD、TKDE、VLDB、TNNLS、TOIS、The Web Conference、WSDM、CIKM等发表高水平论文20余篇。其中CORE A*论文11篇,CCF A类会议或期刊论文9篇,SCI期刊论文13篇(包括6篇IEEE Trans系列顶尖期刊论文)。其中在KDD23发表的工作获得KDD23最佳研究论文奖,这也是自KDD创立以来,中国大陆和港澳地区首次获得该项荣誉。他同时担任多个国际顶尖会议期刊的审稿人或PC member(SIGKDD, NeurIPS, TheWebConf, SIGIR, ICDE, VLDB, TNNLS, etc)。

个人主页: 

https://www.techbeat.net/grzytrkj?id=34356


关于TechBeat人工智能社区

TechBeat(www.techbeat.net)隶属于将门创投,是一个荟聚全球华人AI精英的成长社区。

我们希望为AI人才打造更专业的服务和体验,加速并陪伴其学习成长。

期待这里可以成为你学习AI前沿知识的高地,分享自己最新工作的沃土,在AI进阶之路上的升级打怪的根据地!

更多详细介绍>>TechBeat,一个荟聚全球华人AI精英的学习成长社区

这篇关于Talk | KDD‘23 Best Paper 港中文孙相国:All in One - 提示学习在图神经网络中的探索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/709793

相关文章

Ubuntu 24.04 LTS怎么关闭 Ubuntu Pro 更新提示弹窗?

《Ubuntu24.04LTS怎么关闭UbuntuPro更新提示弹窗?》Ubuntu每次开机都会弹窗提示安全更新,设置里最多只能取消自动下载,自动更新,但无法做到直接让自动更新的弹窗不出现,... 如果你正在使用 Ubuntu 24.04 LTS,可能会注意到——在使用「软件更新器」或运行 APT 命令时,

提示:Decompiled.class file,bytecode version如何解决

《提示:Decompiled.classfile,bytecodeversion如何解决》在处理Decompiled.classfile和bytecodeversion问题时,通过修改Maven配... 目录问题原因总结问题1、提示:Decompiled .class file,China编程 bytecode

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

安卓链接正常显示,ios#符被转义%23导致链接访问404

原因分析: url中含有特殊字符 中文未编码 都有可能导致URL转换失败,所以需要对url编码处理  如下: guard let allowUrl = webUrl.addingPercentEncoding(withAllowedCharacters: .urlQueryAllowed) else {return} 后面发现当url中有#号时,会被误伤转义为%23,导致链接无法访问

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]