算法快学笔记(十三):狄克斯特拉(Dijkstra)算法原理与实现

2024-02-14 11:08

本文主要是介绍算法快学笔记(十三):狄克斯特拉(Dijkstra)算法原理与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 简介

广度优先算法可以找出段数最少的路径,但是对于路径上带权重的图,想要找出最快的路径,则需要使用狄克斯特拉算法。

2. 原理

为了说明狄克斯特拉算法的原理,使用换钢琴的的例子来做说明.
假设Rama想拿自己的乐谱换架钢琴:

  1. Alex说:“这是我最喜欢的乐队Destroyer的海报,我愿意拿它换你的乐谱。
  2. 如果你再加5美元,还可拿乐谱换我这张稀有的Rick Astley黑胶唱片。”
  3. Amy说:“哇,我听说这张黑胶唱片里有首非常好听的歌曲,我愿意拿我的吉他或架子鼓换这张海报或黑胶唱片。
  4. Beethoven惊呼:“我一直想要吉他,我愿意拿我的钢琴换Amy的吉他或架子鼓。”

商品兑换的关系如下:
在这里插入图片描述

现在需要确定,Rama如何才能以最少的钱换到他想要的钢琴。

狄克斯特拉算法解决问题的思路主要包括以下四步:

  1. 找出最便宜的节点,即可用最便宜的价格可前往的节点。
  2. 对于该节点的邻居,检查是否有前往它们的更短路径,如果有,就更新其开销。
  3. 重复这个过程,直到对图中的每个节点都这样做了。
  4. 计算最终路径

下面结合狄克斯特拉的算法步骤,对该问题进行推算。

2.1 找出最便宜的节点

对于乐谱而言,可以直接兑换唱片和海报,所需的费用分别为5和0.
为了观察的算法过程中数据的变化情况,使用一个表格来计算兑换的开销以及父节点的情况,对于目前开销的未知的节点用无穷大来表示,经过该步骤后,数据的情况如下:

父节点节点成本
乐谱唱片5
乐谱海报0
吉他
架子鼓
钢琴

2.2 计算前往该节点的各个邻居的开销

通过步骤1的处理,得知从乐谱->海波的开销是最小的。此时计算从海报到达各邻居节点的开销,如果邻居节点的开销变少了,则更新其开销和父节点。最终的结果如下:

父节点节点成本
乐谱唱片5
乐谱海报0
海报吉他30
海报架子鼓35
钢琴

2.3 重复上面的步骤

接下来还没有被遍历的节点中,最便宜的兑换商品为唱片,此时计算从唱片到达各邻居节点的开销,通过计算,从唱片到达吉他只需20,从唱片到达架子鼓只需25,因此需要更新结果表中吉他和架子鼓的父节点以及成本,最终结果如下:

父节点节点成本
乐谱唱片5
乐谱海报0
唱片吉他20
唱片架子鼓25
钢琴

接下来最便宜的节点是吉他,从吉他这个路径走,到钢琴的价格为40.接z最后是架子鼓,从架子鼓这个路径走,到钢琴的价格为35. 于是最终结果如下:

父节点节点成本
乐谱唱片5
乐谱海报0
唱片吉他20
唱片架子鼓25
架子鼓钢琴35

通过上述表格反推,花费最小的兑换路径为:乐谱–>唱片–>架子鼓–>钢琴,需要花费35.

实现

代码的实现中,需要维护三个散列表:

  1. graph:用来描述顶点与边的关系,为了简单演示,可以直接使用字典的形式表示顶点与边。
  2. costs:用来记录途径顶点的开销
  3. parents:用来记录各顶点的父顶点情况

代码如下:

# -*- coding:utf-8 -*-
# @Author:sunaihua
'''
使用Dijkstra算法得到带权图的最短路径
'''#graph 结构
graph={}
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2
graph["a"] = {}
graph["a"]["fin"] = 1
graph["b"] = {}
graph["b"]["a"] = 3
graph["b"]["fin"] = 5
graph["fin"] = {}# 成本数据
infinity = float("inf")
costs = {}
costs["a"] = 6
costs["b"] = 2
costs["fin"] = infinity
# parent数据
parents = {}
parents["a"] = "start"
parents["b"] = "start"
parents["fin"] = None
# 已经处理过的节点
processed = []def find_lowest_cost_node(costs):lowest_cost = float("inf")lowest_cost_node = Nonefor node in costs:cost = costs[node]if cost < lowest_cost and node not in processed:lowest_cost = costlowest_cost_node = nodereturn lowest_cost_nodedef dijkstra():node = find_lowest_cost_node(costs)while node is not None:cost = costs[node]neighbors = graph[node]for n in neighbors.keys():new_cost = cost + neighbors[n]if costs[n] > new_cost:costs[n] = new_costparents[n] = nodeprocessed.append(node)node = find_lowest_cost_node(costs)# 更具parents中的fin,向前反推,就可以得到最终的路径print parentsif __name__ == '__main__':dijkstra()

总结

  1. 广度优先搜索用于在非加权图中查找最短路径。
  2. 狄克斯特拉算法用于在加权图中查找最短路径。
  3. 仅当权重为正时狄克斯特拉算法才管用。
  4. 如果图中包含负权边,请使用贝尔曼-福德算法。

这篇关于算法快学笔记(十三):狄克斯特拉(Dijkstra)算法原理与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/708326

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核