算法快学笔记(十三):狄克斯特拉(Dijkstra)算法原理与实现

2024-02-14 11:08

本文主要是介绍算法快学笔记(十三):狄克斯特拉(Dijkstra)算法原理与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 简介

广度优先算法可以找出段数最少的路径,但是对于路径上带权重的图,想要找出最快的路径,则需要使用狄克斯特拉算法。

2. 原理

为了说明狄克斯特拉算法的原理,使用换钢琴的的例子来做说明.
假设Rama想拿自己的乐谱换架钢琴:

  1. Alex说:“这是我最喜欢的乐队Destroyer的海报,我愿意拿它换你的乐谱。
  2. 如果你再加5美元,还可拿乐谱换我这张稀有的Rick Astley黑胶唱片。”
  3. Amy说:“哇,我听说这张黑胶唱片里有首非常好听的歌曲,我愿意拿我的吉他或架子鼓换这张海报或黑胶唱片。
  4. Beethoven惊呼:“我一直想要吉他,我愿意拿我的钢琴换Amy的吉他或架子鼓。”

商品兑换的关系如下:
在这里插入图片描述

现在需要确定,Rama如何才能以最少的钱换到他想要的钢琴。

狄克斯特拉算法解决问题的思路主要包括以下四步:

  1. 找出最便宜的节点,即可用最便宜的价格可前往的节点。
  2. 对于该节点的邻居,检查是否有前往它们的更短路径,如果有,就更新其开销。
  3. 重复这个过程,直到对图中的每个节点都这样做了。
  4. 计算最终路径

下面结合狄克斯特拉的算法步骤,对该问题进行推算。

2.1 找出最便宜的节点

对于乐谱而言,可以直接兑换唱片和海报,所需的费用分别为5和0.
为了观察的算法过程中数据的变化情况,使用一个表格来计算兑换的开销以及父节点的情况,对于目前开销的未知的节点用无穷大来表示,经过该步骤后,数据的情况如下:

父节点节点成本
乐谱唱片5
乐谱海报0
吉他
架子鼓
钢琴

2.2 计算前往该节点的各个邻居的开销

通过步骤1的处理,得知从乐谱->海波的开销是最小的。此时计算从海报到达各邻居节点的开销,如果邻居节点的开销变少了,则更新其开销和父节点。最终的结果如下:

父节点节点成本
乐谱唱片5
乐谱海报0
海报吉他30
海报架子鼓35
钢琴

2.3 重复上面的步骤

接下来还没有被遍历的节点中,最便宜的兑换商品为唱片,此时计算从唱片到达各邻居节点的开销,通过计算,从唱片到达吉他只需20,从唱片到达架子鼓只需25,因此需要更新结果表中吉他和架子鼓的父节点以及成本,最终结果如下:

父节点节点成本
乐谱唱片5
乐谱海报0
唱片吉他20
唱片架子鼓25
钢琴

接下来最便宜的节点是吉他,从吉他这个路径走,到钢琴的价格为40.接z最后是架子鼓,从架子鼓这个路径走,到钢琴的价格为35. 于是最终结果如下:

父节点节点成本
乐谱唱片5
乐谱海报0
唱片吉他20
唱片架子鼓25
架子鼓钢琴35

通过上述表格反推,花费最小的兑换路径为:乐谱–>唱片–>架子鼓–>钢琴,需要花费35.

实现

代码的实现中,需要维护三个散列表:

  1. graph:用来描述顶点与边的关系,为了简单演示,可以直接使用字典的形式表示顶点与边。
  2. costs:用来记录途径顶点的开销
  3. parents:用来记录各顶点的父顶点情况

代码如下:

# -*- coding:utf-8 -*-
# @Author:sunaihua
'''
使用Dijkstra算法得到带权图的最短路径
'''#graph 结构
graph={}
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2
graph["a"] = {}
graph["a"]["fin"] = 1
graph["b"] = {}
graph["b"]["a"] = 3
graph["b"]["fin"] = 5
graph["fin"] = {}# 成本数据
infinity = float("inf")
costs = {}
costs["a"] = 6
costs["b"] = 2
costs["fin"] = infinity
# parent数据
parents = {}
parents["a"] = "start"
parents["b"] = "start"
parents["fin"] = None
# 已经处理过的节点
processed = []def find_lowest_cost_node(costs):lowest_cost = float("inf")lowest_cost_node = Nonefor node in costs:cost = costs[node]if cost < lowest_cost and node not in processed:lowest_cost = costlowest_cost_node = nodereturn lowest_cost_nodedef dijkstra():node = find_lowest_cost_node(costs)while node is not None:cost = costs[node]neighbors = graph[node]for n in neighbors.keys():new_cost = cost + neighbors[n]if costs[n] > new_cost:costs[n] = new_costparents[n] = nodeprocessed.append(node)node = find_lowest_cost_node(costs)# 更具parents中的fin,向前反推,就可以得到最终的路径print parentsif __name__ == '__main__':dijkstra()

总结

  1. 广度优先搜索用于在非加权图中查找最短路径。
  2. 狄克斯特拉算法用于在加权图中查找最短路径。
  3. 仅当权重为正时狄克斯特拉算法才管用。
  4. 如果图中包含负权边,请使用贝尔曼-福德算法。

这篇关于算法快学笔记(十三):狄克斯特拉(Dijkstra)算法原理与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/708326

相关文章

C#实现将Excel表格转换为图片(JPG/ PNG)

《C#实现将Excel表格转换为图片(JPG/PNG)》Excel表格可能会因为不同设备或字体缺失等问题,导致格式错乱或数据显示异常,转换为图片后,能确保数据的排版等保持一致,下面我们看看如何使用C... 目录通过C# 转换Excel工作表到图片通过C# 转换指定单元格区域到图片知识扩展C# 将 Excel

基于Java实现回调监听工具类

《基于Java实现回调监听工具类》这篇文章主要为大家详细介绍了如何基于Java实现一个回调监听工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录监听接口类 Listenable实际用法打印结果首先,会用到 函数式接口 Consumer, 通过这个可以解耦回调方法,下面先写一个

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Qt中QGroupBox控件的实现

《Qt中QGroupBox控件的实现》QGroupBox是Qt框架中一个非常有用的控件,它主要用于组织和管理一组相关的控件,本文主要介绍了Qt中QGroupBox控件的实现,具有一定的参考价值,感兴趣... 目录引言一、基本属性二、常用方法2.1 构造函数 2.2 设置标题2.3 设置复选框模式2.4 是否

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法

《springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法》:本文主要介绍springboot整合阿里云百炼DeepSeek实现sse流式打印,本文给大家介绍的非常详细,对大... 目录1.开通阿里云百炼,获取到key2.新建SpringBoot项目3.工具类4.启动类5.测试类6.测

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient