算法快学笔记(十三):狄克斯特拉(Dijkstra)算法原理与实现

2024-02-14 11:08

本文主要是介绍算法快学笔记(十三):狄克斯特拉(Dijkstra)算法原理与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 简介

广度优先算法可以找出段数最少的路径,但是对于路径上带权重的图,想要找出最快的路径,则需要使用狄克斯特拉算法。

2. 原理

为了说明狄克斯特拉算法的原理,使用换钢琴的的例子来做说明.
假设Rama想拿自己的乐谱换架钢琴:

  1. Alex说:“这是我最喜欢的乐队Destroyer的海报,我愿意拿它换你的乐谱。
  2. 如果你再加5美元,还可拿乐谱换我这张稀有的Rick Astley黑胶唱片。”
  3. Amy说:“哇,我听说这张黑胶唱片里有首非常好听的歌曲,我愿意拿我的吉他或架子鼓换这张海报或黑胶唱片。
  4. Beethoven惊呼:“我一直想要吉他,我愿意拿我的钢琴换Amy的吉他或架子鼓。”

商品兑换的关系如下:
在这里插入图片描述

现在需要确定,Rama如何才能以最少的钱换到他想要的钢琴。

狄克斯特拉算法解决问题的思路主要包括以下四步:

  1. 找出最便宜的节点,即可用最便宜的价格可前往的节点。
  2. 对于该节点的邻居,检查是否有前往它们的更短路径,如果有,就更新其开销。
  3. 重复这个过程,直到对图中的每个节点都这样做了。
  4. 计算最终路径

下面结合狄克斯特拉的算法步骤,对该问题进行推算。

2.1 找出最便宜的节点

对于乐谱而言,可以直接兑换唱片和海报,所需的费用分别为5和0.
为了观察的算法过程中数据的变化情况,使用一个表格来计算兑换的开销以及父节点的情况,对于目前开销的未知的节点用无穷大来表示,经过该步骤后,数据的情况如下:

父节点节点成本
乐谱唱片5
乐谱海报0
吉他
架子鼓
钢琴

2.2 计算前往该节点的各个邻居的开销

通过步骤1的处理,得知从乐谱->海波的开销是最小的。此时计算从海报到达各邻居节点的开销,如果邻居节点的开销变少了,则更新其开销和父节点。最终的结果如下:

父节点节点成本
乐谱唱片5
乐谱海报0
海报吉他30
海报架子鼓35
钢琴

2.3 重复上面的步骤

接下来还没有被遍历的节点中,最便宜的兑换商品为唱片,此时计算从唱片到达各邻居节点的开销,通过计算,从唱片到达吉他只需20,从唱片到达架子鼓只需25,因此需要更新结果表中吉他和架子鼓的父节点以及成本,最终结果如下:

父节点节点成本
乐谱唱片5
乐谱海报0
唱片吉他20
唱片架子鼓25
钢琴

接下来最便宜的节点是吉他,从吉他这个路径走,到钢琴的价格为40.接z最后是架子鼓,从架子鼓这个路径走,到钢琴的价格为35. 于是最终结果如下:

父节点节点成本
乐谱唱片5
乐谱海报0
唱片吉他20
唱片架子鼓25
架子鼓钢琴35

通过上述表格反推,花费最小的兑换路径为:乐谱–>唱片–>架子鼓–>钢琴,需要花费35.

实现

代码的实现中,需要维护三个散列表:

  1. graph:用来描述顶点与边的关系,为了简单演示,可以直接使用字典的形式表示顶点与边。
  2. costs:用来记录途径顶点的开销
  3. parents:用来记录各顶点的父顶点情况

代码如下:

# -*- coding:utf-8 -*-
# @Author:sunaihua
'''
使用Dijkstra算法得到带权图的最短路径
'''#graph 结构
graph={}
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2
graph["a"] = {}
graph["a"]["fin"] = 1
graph["b"] = {}
graph["b"]["a"] = 3
graph["b"]["fin"] = 5
graph["fin"] = {}# 成本数据
infinity = float("inf")
costs = {}
costs["a"] = 6
costs["b"] = 2
costs["fin"] = infinity
# parent数据
parents = {}
parents["a"] = "start"
parents["b"] = "start"
parents["fin"] = None
# 已经处理过的节点
processed = []def find_lowest_cost_node(costs):lowest_cost = float("inf")lowest_cost_node = Nonefor node in costs:cost = costs[node]if cost < lowest_cost and node not in processed:lowest_cost = costlowest_cost_node = nodereturn lowest_cost_nodedef dijkstra():node = find_lowest_cost_node(costs)while node is not None:cost = costs[node]neighbors = graph[node]for n in neighbors.keys():new_cost = cost + neighbors[n]if costs[n] > new_cost:costs[n] = new_costparents[n] = nodeprocessed.append(node)node = find_lowest_cost_node(costs)# 更具parents中的fin,向前反推,就可以得到最终的路径print parentsif __name__ == '__main__':dijkstra()

总结

  1. 广度优先搜索用于在非加权图中查找最短路径。
  2. 狄克斯特拉算法用于在加权图中查找最短路径。
  3. 仅当权重为正时狄克斯特拉算法才管用。
  4. 如果图中包含负权边,请使用贝尔曼-福德算法。

这篇关于算法快学笔记(十三):狄克斯特拉(Dijkstra)算法原理与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/708326

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文