大模型Tokenizer知识

2024-02-14 05:36
文章标签 模型 知识 tokenizer

本文主要是介绍大模型Tokenizer知识,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Byte-Pair Encoding(BPE) 如何构建词典?

Byte-Pair Encoding(BPE)是一种常用的无监督分词方法,用于将文本分解为子词或字符级别的单位。BPE的词典构建过程如下:

  1. 初始化词典:将每个字符视为一个初始的词。例如,对于输入文本"hello world",初始词典可以包含{'h', 'e', 'l', 'o', 'w', 'r', 'd'}。

  2. 统计词频:对于每个词,统计其在文本中的频率。例如,在"hello world"中,'h'出现1次,'e'出现1次,'l'出现3次,'o'出现2次,'w'出现1次,'r'出现1次,'d'出现1次。

  3. 合并频率最高的词对:在每次迭代中,选择频率最高的词对进行合并。合并的方式是将两个词连接起来,并用一个特殊的符号(如"_")分隔。例如,在初始词典中,选择频率最高的词对"l"和"l",将它们合并为"ll",更新词典为{'h', 'e', 'll', 'o', 'w', 'r', 'd'}。

  4. 更新词频:更新合并后的词频。对于合并的词,统计其在文本中的频率。例如,在"hello world"中,'h'出现1次,'e'出现1次,'ll'出现3次,'o'出现2次,'w'出现1次,'r'出现1次,'d'出现1次。

  5. 重复步骤3和4:重复步骤3和4,直到达到预设的词典大小或者满足其他停止条件。每次迭代都会合并频率最高的词对,并更新词频。

最终得到的词典即为BPE的词典。通过BPE算法,可以将文本分解为多个子词,其中一些子词可能是常见的词汇,而其他子词则是根据输入文本的特点生成的。这种方式可以更好地处理未登录词和稀有词,并提高模型对复杂词汇和短语的处理能力。

WordPiece 与 BPE 异同点是什么?

WordPiece和BPE(Byte-Pair Encoding)都是常用的无监督分词方法,它们有一些相似之处,但也存在一些差异。

  1. 分词目标:WordPiece和BPE都旨在将文本分解为子词或字符级别的单位,以便更好地处理未登录词和稀有词,提高模型对复杂词汇和短语的处理能力。

  2. 无监督学习:WordPiece和BPE都是无监督学习方法,不需要依赖外部的标注数据,而是通过分析输入文本自动构建词典。

  3. 拆分策略:WordPiece采用贪婪的自顶向下的拆分策略,将词汇表中的词分解为更小的子词。它使用最大似然估计来确定最佳的分割点,并通过词频来更新词典。BPE则采用自底向上的拆分策略,通过合并频率最高的词对来构建词典。它使用词频来选择合并的词对,并通过更新词频来更新词典。

  4. 分割粒度:WordPiece通常将词分解为更小的子词,例如将"running"分解为"run"和"##ning"。这些子词通常以"##"前缀表示它们是一个词的一部分。BPE则将词分解为更小的子词或字符级别的单位。它不使用特殊的前缀或后缀来表示子词。

  5. 处理未登录词:WordPiece和BPE在处理未登录词时有所不同。WordPiece通常将未登录词分解为更小的子词,以便模型可以更好地处理它们。而BPE则将未登录词作为单独的词处理,不进行进一步的拆分。

总体而言,WordPiece和BPE都是有效的分词方法,选择使用哪种方法取决于具体的任务需求和语料特点。

简单介绍一下 SentencePiece 思路?

SentencePiece是一种基于BPE算法的分词工具,旨在将文本分解为子词或字符级别的单位。与传统的BPE算法不同,SentencePiece引入了一种更灵活的训练方式,可以根据不同任务和语料库的需求进行自定义。SentencePiece的思路如下:

  1. 初始化词典:将每个字符视为一个初始的词。例如,对于输入文本"hello world",初始词典可以包含{'h', 'e', 'l', 'o', 'w', 'r', 'd'}。

  2. 统计词频:对于每个词,统计其在文本中的频率。例如,在"hello world"中,'h'出现1次,'e'出现1次,'l'出现3次,'o'出现2次,'w'出现1次,'r'出现1次,'d'出现1次。

  3. 合并频率最高的词对:在每次迭代中,选择频率最高的词对进行合并。合并的方式是将两个词连接起来,并用一个特殊的符号(如"_")分隔。例如,在初始词典中,选择频率最高的词对"l"和"l",将它们合并为"ll",更新词典为{'h', 'e', 'll', 'o', 'w', 'r', 'd'}。

  4. 更新词频:更新合并后的词频。对于合并的词,统计其在文本中的频率。例如,在"hello world"中,'h'出现1次,'e'出现1次,'ll'出现3次,'o'出现2次,'w'出现1次,'r'出现1次,'d'出现1次。

  5. 重复步骤3和4:重复步骤3和4,直到达到预设的词典大小或者满足其他停止条件。每次迭代都会合并频率最高的词对,并更新词频。

  6. 训练模型:根据得到的词典,训练一个分词模型。模型可以根据需求选择将文本分解为子词或字符级别的单位。

通过SentencePiece,可以根据不同任务和语料库的需求,自定义分词模型。它可以更好地处理未登录词和稀有词,提高模型对复杂词汇和短语的处理能力。同时,SentencePiece还支持多种语言和编码方式,可以广泛应用于自然语言处理任务中。

不同大模型 LLMs 的分词方式

大模型语言模型(Large Language Models,LLMs)通常采用不同的分词方式,这些方式可以根据任务和语料库的不同进行调整。以下是一些常见的大模型LLMs的分词方式的举例:

  1. 基于规则的分词:这种分词方式使用预定义的规则和模式来切分文本。例如,可以使用空格、标点符号或特定的字符来确定词语的边界。这种方法简单直接,但对于复杂的语言和文本结构可能不够准确。

  2. 基于统计的分词:这种分词方式使用统计模型来确定词语的边界。通常会使用大量的标注数据来训练模型,并根据词语的频率和上下文来进行切分。这种方法相对准确,但对于未见过的词语或特定领域的术语可能不够准确。

  3. 基于深度学习的分词:这种分词方式使用深度学习模型,如循环神经网络(RNN)或Transformer模型,来进行分词。这些模型可以学习文本的上下文信息,并根据语义和语法规则来进行切分。这种方法可以处理复杂的语言结构和未见过的词语,但需要大量的训练数据和计算资源。

  4. 基于预训练模型的分词:最近的研究表明,使用预训练的语言模型,如BERT、GPT等,可以在分词任务上取得很好的效果。这些模型在大规模的文本数据上进行预训练,并能够学习到丰富的语言表示。在具体的分词任务中,可以通过在预训练模型上进行微调来进行分词。这种方法具有较高的准确性和泛化能力。

  5. 基于词典的分词:这是最常见的分词方式之一,使用一个预先构建好的词典来将文本分解为单词。例如,BERT模型使用WordPiece分词器,将文本分解为词片段(subword units),并在词典中查找匹配的词片段。

  6. 基于字符的分词:这种方式将文本分解为单个字符或者字符级别的单位。例如,GPT模型使用字节对编码(Byte Pair Encoding,BPE)算法,将文本分解为字符或字符片段。

  7. 基于音节的分词:对于一些语言,特别是拼音文字系统,基于音节的分词方式更为常见。这种方式将文本分解为音节或音节级别的单位。例如,对于中文,可以使用基于音节的分词器将文本分解为音节。

  8. 基于规则的分词:有些语言具有明确的分词规则,可以根据这些规则将文本分解为单词。例如,日语中的分词可以基于汉字辞书或者语法规则进行。

  9. 基于统计的分词:这种方式使用统计模型来判断文本中的分词边界。例如,隐马尔可夫模型(Hidden Markov Model,HMM)可以通过训练来预测最可能的分词边界。

需要注意的是,不同的大模型LLMs可能在分词方式上有所差异,具体的实现和效果可能因模型的结构、训练数据和任务设置而有所不同。甚至在同一个模型中,可以根据任务和语料库的需求进行调整。这些分词方式的选择会对模型的性能和效果产生影响,因此需要根据具体情况进行选择和调整。

这篇关于大模型Tokenizer知识的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/707625

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行