基于CRF的命名实体识别思路与实现

2024-02-14 04:40

本文主要是介绍基于CRF的命名实体识别思路与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文参考了https://github.com/liuhuanyong的CRF实现分词的思路

CRF的实现思路类似于HMM,需要求解几个概率(词与词的转移概率,状态与状态的转移概率、发射概率、初始词概率),然后用verbiter方法求解,verbiter方法的原理简单来说就是给出当前状态,求解最有可能转移至该状态的上一个状态,这个原理和思路也是实现CRF的核心

首先给出宗成庆老师PPT的一个关于CRF中文分词例子(实体识别无非是把字转为词,训练样本是带有标记的):

 

 

由宗成庆老师PPT的例子可以看到,若使用CRF实现中文分词,总结需要以下几个概率:

1.词与词的转移概率:如下图第一项当前字被标记为B时上一个字为null的概率,但是在本人的实现中,仅仅计算了词与词之间的转移概率,即某词和词之间转移概率不为None,则f为1,λ为某词和词之间的转移概率,否则f=0。如下图若第三项'乒'转移至'乒'的概率不为None,则f(乒,乓,B) = word_trans(乒,乓) 

2.初始词概率:从上图第一项f(null,乒,B)则发现又要计算一个概率:null->句子的首词的转移概率,本人的实现中,直接计算每个句子的首词在训练样本中出现的概率strat_word(乒)代替f(null,乒,B)

3.发射概率:即上图的第二项f(乒,B),所谓发射概率即为在某个状态中,某个词出现的可能性有多大。如状态B中有['乒':0.03,'乓':0.02,'我':0.06]

4.转移概率:verbiter方法的原理简单来说就是给出当前状态,求解最有可能转移至该状态的上一个状态。基于这种思路,和原理,下图的式子便很好理解了,即若当前状态为B,求解最有可能转移至状态B的上一状态,式中Teb则是E转移至B的概率,Tsb则是S转移至B的概率

                                 

故求解出以上几个概率,则实现verbiter方法无非是套公式了。

现给出实现思路

                1.根据语料库求解状态转移概率 (根据tag求解 B-LOG --> I--LOG)

                2.根据语料库求解词与词的转移概率
                3.根据语料库求解发射概率 (B-LOG中南京的概率)

                4.根据语料库求解初始词概率
                5.根据vebiter方法求解
                    句子:陈鼎立毕业于西南科技大学
                    输入分词结果:陈 鼎立 毕业 于 西南 科技 大学
                    1)初始化, R1x = W1x = l1*f(null,陈,B) + l2*f(陈,B) + l3*f(陈,B,鼎立)
                        约定:第一项的初始词为陈的概率,第二项为状态B中陈的发射概率,第三项为陈->鼎立的转移概率

                        注意:句子的第二个词开始则是第i-1个词转移至第i个词的概率 + 第i个词属于某个状态的概率 + 第i个词转移至第i+1个词的概率
                    2)循环,Rb = max{Teb*Re,Tsb*Rs}*Wb
                        约定:Teb为E--B的权重
                    3)回溯
                        根据最后一个词的状态回溯路径

 

代码:首先说明,本人在实现的过程中忘记有几个概率要求,故训练模型(参数估计)部分代码写的非常混乱,不过理解上面的内容和思路,本人的代码是否参考都无太大意义。

1.训练状态转移概率和发射概率

class CRF_train:def __init__(self):self.state_list = ['O','B-LOCATION','I-LOCATION','O-LOCATION','B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION','B-PERSON','B-TIME']self.trans_dict = {}self.emit_dict = {}self.count_dict = {}self.word_trans = {}self.word_count = {}self.words_list = []def init(self):for state in self.state_list:self.emit_dict[state] = {}self.count_dict[state] = 0for state in self.state_list:self.trans_dict[state] = {}for state1 in self.state_list:self.trans_dict[state][state1] = 0def train(self):self.init()for line in open('../data/train.txt',encoding='utf-8'):if line:line = line.strip()word_list = line.split(' ')char_list = []for word in word_list:word1,tag = word.split('/')char_list.append((word1,tag))for i in range(len(char_list) - 1):self.trans_dict[char_list[i][1]][char_list[i+1][1]] += 1self.count_dict[char_list[i][1]] += 1for i in range(len(char_list)):state = char_list[i][1]word = char_list[i][0]if word not in self.emit_dict[state]:self.emit_dict[state][word] = 1else:self.emit_dict[state][word] += 1for i in range(len(char_list)):word = char_list[i][0]if word not in self.word_count:self.word_count[word] = 1else:self.word_count[word] += 1else:continuefor state in self.state_list:for state1 in self.state_list:self.trans_dict[state][state1] = self.trans_dict[state][state1] / self.count_dict[state]for state in self.state_list:for word in self.emit_dict[state]:self.emit_dict[state][word] = self.emit_dict[state][word] / self.count_dict[state]self.save_model(self.emit_dict, './model/emit_dict.txt')self.save_model(self.trans_dict, './model/trans_dict.txt')def save_model(self,word_dict,model_path):f = open(model_path,'w')f.write(str(word_dict))f.close()if __name__ == '__main__':ct = CRF_train()ct.train()

2.训练词与词之间的转移概率,注意的是求解词与词之间的转移概率前,首先需要将训练样本中的不重复的词提取出来,然后凭此来求解词与词之间的转移概率,还有的是,在我的实际实现中,训练样本中不重复的词有80000多个,若采用求解状态转移概率的思路,初始化和计算一个80000乘80000的矩阵是非常不现实的,故正确的思路是应像是求解发射概率的思路,即先初始化各个词为 {词1:{},词2:{}},然后根据训练样本统计词与词转移的词频,再除以每个词出现的总次数(需要统计每个词出现的频率,即词1、词2出现的频率)即求解出词与词之间的转移概率。结果应如{词1:{词2:0.03,词3:0.05},词2:{词1:0.02}}的形式。

def save_model(model_path, word_dict):f = open(model_path, 'w')f.write(str(word_dict))f.close()def load_model(model_path):f = open(model_path,'r')a = f.read()word_dict = eval(a)f.close()return word_dictdef init(word_dict):word_trans = {}for word in word_dict:word_trans[word] = {}return word_transif __name__ == '__main__':word_dict = load_model('./model/set_list.txt')word_trans = init(word_dict)count_dict = {}for line in open('../data/train.txt', encoding='utf-8'):words_list = []if line:line = line.strip()wl = line.split(' ')for w in wl:word,tag = w.split('/')words_list.append(word)if word not in count_dict:count_dict[word] = 1else:count_dict[word] += 1for i in range(len(words_list) - 1):if words_list[i+1] not in word_trans[words_list[i]]:word_trans[words_list[i]][words_list[i + 1]] = 1else:word_trans[words_list[i]][words_list[i + 1]] += 1save_model('./model/word_trans.txt', word_trans)save_model('./model/count_dict.txt', word_trans)for key in word_trans.keys():for key1 in word_trans[key].keys():word_trans[key][key1] = word_trans[key][key1]/count_dict[key]save_model('./model/prob_word_trans.txt',word_trans)

3.初始词概率,你懂的,就那么求

def save_model(word_dict,model_path):f = open(model_path,'w')f.write(str(word_dict))f.close()if __name__ == '__main__':start_dict = {}line_index = 0for line in open('../data/train.txt', encoding='utf-8'):if line:line = line.strip()word_list = line.split(' ')init_word,init_tag = word_list[0].split('/')if init_word not in start_dict:start_dict[init_word] = 1else:start_dict[init_word] += 1line_index += 1for key in start_dict:start_dict[key] = start_dict[key] / line_indexsave_model(start_dict,'./model/start_word.txt')

4.实体识别代码

verbiter的原理我上面说过,就是在当前状态下,求解上一最有可能转移至该状态的状态。

class CRF_ner:def __init__(self):trans_path = './model/trans_dict.txt'emit_path = './model/emit_dict.txt'word_trans_path = './model/prob_word_trans.txt'start_word_path = './model/start_word.txt'self.prob_trans = self.load_model(trans_path)self.prob_emit = self.load_model(emit_path)self.prob_word_trans = self.load_model(word_trans_path)self.prob_start_word = self.load_model(start_word_path)def load_model(self,model_path):f = open(model_path,'r')a = f.read()word_dict = eval(a)f.close()return word_dictdef verbiter(self,sent,state_list):V = [{}]path = {}#state_list = ['O', 'B-LOCATION', 'I-LOCATION', 'O-LOCATION', 'B-ORGANIZATION', 'I-ORGANIZATION',#'O-ORGANIZATION', 'B-PERSON', 'B-TIME']#初始化for state in state_list:if self.prob_word_trans.get(sent[0],0) == 0:V[0][state] = self.prob_start_word.get(sent[0],0) + self.prob_emit[state].get(sent[0],0)else:V[0][state] = self.prob_start_word.get(sent[0], 0) + self.prob_emit[state].get(sent[0], 0) + self.prob_word_trans[sent[0]].get(sent[1], 0)path[state] = [state]for i in range(1,len(sent)):V.append({})newpath = {}state_path = []for state in state_list:if i == len(sent) - 1:if self.prob_word_trans.get(sent[i-1], 0) == 0:W = self.prob_emit[state].get(sent[i], 0)else:W = self.prob_word_trans[sent[i - 1]].get(sent[i], 0) + self.prob_emit[state].get(sent[i], 0)else:W = (self.prob_word_trans[sent[i - 1]].get(sent[i], 0) if self.prob_word_trans.get(sent[i-1],0) != 0 else 0) + self.prob_emit[state].get(sent[i],0) + (self.prob_word_trans[sent[i]].get(sent[i + 1], 0) if self.prob_word_trans.get(sent[i],0) != 0 else 0)for state1 in state_list:R = V[i-1][state1] * self.prob_trans[state1].get(state,0)state_path.append((R,state1))if state_path == []:(prob,y) = (0.0,'O')else:(prob,y) = max(state_path)V[i][state] = prob * Wnewpath[state] = path[y] + [state]path = newpath(prob, state) = max([(V[len(sent) - 1][y], y) for y in state_list])return (prob,path[state])def cut(self,sent):print('========开始计算========')state_list = ['O', 'B-LOCATION', 'I-LOCATION', 'O-LOCATION', 'B-ORGANIZATION', 'I-ORGANIZATION','O-ORGANIZATION', 'B-PERSON', 'B-TIME']prob,pos_list = self.verbiter(sent,state_list)result = []sub_result = []for i in range(len(pos_list)-1):if pos_list[i] in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION'] and pos_list[i+1] in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION']:sub_result.append(sent[i])elif pos_list[i] in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION'] and pos_list[i+1] not in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION']:result.append(sub_result)sub_result = []last = len(pos_list) - 1print(pos_list)if pos_list[last-1] in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION'] and pos_list[last] in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION']:sub_result.append(sent[last])result.append(sub_result)elif pos_list[last-1] not in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION'] and pos_list[last] in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION']:sub_result.append(sent[last])result.append(sub_result)entities = []for entity_list in result:entity = ''for tmp in entity_list:entity += tmpentities.append(entity)return entitiesif __name__ == '__main__':sent = ['陈','鼎立','毕业','于','西南','科技','大学']# sent = ['中国','政府','要求','美方','遵守','条约']# sent = ['清华大学', '在', '北京市', '海', '淀', '区', '清', '华', '园', '1', '号']# sent = ['清华大学','副','校长','尤政','宣布','成立','人工','智能','研究院','张钹','院士','担任','新','研究院','院长']ce = CRF_ner()result = ce.cut(sent)print(result)

 

以上就是全部内容,各位看官需要注意的是在计算词与词的转移概率之前,需要在训练样本提取不重复的各词作为训练词与词转移概率的前提,在代码中没有给出(因为写完就给删了。。。。。懒的写),没几行,看官可以自行实现。

本人水平较差。若没有使有缘看到此文的看官浪费时间 ,便好。

本文中没有给出CRF的公式详细推导和原理介绍,我觉得给出一个例子用以实现代码这样效果是最好的,若各位看官需要详细学习和了解CRF,嗯,自行百度

 

 

这篇关于基于CRF的命名实体识别思路与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/707525

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一