基于CRF的命名实体识别思路与实现

2024-02-14 04:40

本文主要是介绍基于CRF的命名实体识别思路与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文参考了https://github.com/liuhuanyong的CRF实现分词的思路

CRF的实现思路类似于HMM,需要求解几个概率(词与词的转移概率,状态与状态的转移概率、发射概率、初始词概率),然后用verbiter方法求解,verbiter方法的原理简单来说就是给出当前状态,求解最有可能转移至该状态的上一个状态,这个原理和思路也是实现CRF的核心

首先给出宗成庆老师PPT的一个关于CRF中文分词例子(实体识别无非是把字转为词,训练样本是带有标记的):

 

 

由宗成庆老师PPT的例子可以看到,若使用CRF实现中文分词,总结需要以下几个概率:

1.词与词的转移概率:如下图第一项当前字被标记为B时上一个字为null的概率,但是在本人的实现中,仅仅计算了词与词之间的转移概率,即某词和词之间转移概率不为None,则f为1,λ为某词和词之间的转移概率,否则f=0。如下图若第三项'乒'转移至'乒'的概率不为None,则f(乒,乓,B) = word_trans(乒,乓) 

2.初始词概率:从上图第一项f(null,乒,B)则发现又要计算一个概率:null->句子的首词的转移概率,本人的实现中,直接计算每个句子的首词在训练样本中出现的概率strat_word(乒)代替f(null,乒,B)

3.发射概率:即上图的第二项f(乒,B),所谓发射概率即为在某个状态中,某个词出现的可能性有多大。如状态B中有['乒':0.03,'乓':0.02,'我':0.06]

4.转移概率:verbiter方法的原理简单来说就是给出当前状态,求解最有可能转移至该状态的上一个状态。基于这种思路,和原理,下图的式子便很好理解了,即若当前状态为B,求解最有可能转移至状态B的上一状态,式中Teb则是E转移至B的概率,Tsb则是S转移至B的概率

                                 

故求解出以上几个概率,则实现verbiter方法无非是套公式了。

现给出实现思路

                1.根据语料库求解状态转移概率 (根据tag求解 B-LOG --> I--LOG)

                2.根据语料库求解词与词的转移概率
                3.根据语料库求解发射概率 (B-LOG中南京的概率)

                4.根据语料库求解初始词概率
                5.根据vebiter方法求解
                    句子:陈鼎立毕业于西南科技大学
                    输入分词结果:陈 鼎立 毕业 于 西南 科技 大学
                    1)初始化, R1x = W1x = l1*f(null,陈,B) + l2*f(陈,B) + l3*f(陈,B,鼎立)
                        约定:第一项的初始词为陈的概率,第二项为状态B中陈的发射概率,第三项为陈->鼎立的转移概率

                        注意:句子的第二个词开始则是第i-1个词转移至第i个词的概率 + 第i个词属于某个状态的概率 + 第i个词转移至第i+1个词的概率
                    2)循环,Rb = max{Teb*Re,Tsb*Rs}*Wb
                        约定:Teb为E--B的权重
                    3)回溯
                        根据最后一个词的状态回溯路径

 

代码:首先说明,本人在实现的过程中忘记有几个概率要求,故训练模型(参数估计)部分代码写的非常混乱,不过理解上面的内容和思路,本人的代码是否参考都无太大意义。

1.训练状态转移概率和发射概率

class CRF_train:def __init__(self):self.state_list = ['O','B-LOCATION','I-LOCATION','O-LOCATION','B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION','B-PERSON','B-TIME']self.trans_dict = {}self.emit_dict = {}self.count_dict = {}self.word_trans = {}self.word_count = {}self.words_list = []def init(self):for state in self.state_list:self.emit_dict[state] = {}self.count_dict[state] = 0for state in self.state_list:self.trans_dict[state] = {}for state1 in self.state_list:self.trans_dict[state][state1] = 0def train(self):self.init()for line in open('../data/train.txt',encoding='utf-8'):if line:line = line.strip()word_list = line.split(' ')char_list = []for word in word_list:word1,tag = word.split('/')char_list.append((word1,tag))for i in range(len(char_list) - 1):self.trans_dict[char_list[i][1]][char_list[i+1][1]] += 1self.count_dict[char_list[i][1]] += 1for i in range(len(char_list)):state = char_list[i][1]word = char_list[i][0]if word not in self.emit_dict[state]:self.emit_dict[state][word] = 1else:self.emit_dict[state][word] += 1for i in range(len(char_list)):word = char_list[i][0]if word not in self.word_count:self.word_count[word] = 1else:self.word_count[word] += 1else:continuefor state in self.state_list:for state1 in self.state_list:self.trans_dict[state][state1] = self.trans_dict[state][state1] / self.count_dict[state]for state in self.state_list:for word in self.emit_dict[state]:self.emit_dict[state][word] = self.emit_dict[state][word] / self.count_dict[state]self.save_model(self.emit_dict, './model/emit_dict.txt')self.save_model(self.trans_dict, './model/trans_dict.txt')def save_model(self,word_dict,model_path):f = open(model_path,'w')f.write(str(word_dict))f.close()if __name__ == '__main__':ct = CRF_train()ct.train()

2.训练词与词之间的转移概率,注意的是求解词与词之间的转移概率前,首先需要将训练样本中的不重复的词提取出来,然后凭此来求解词与词之间的转移概率,还有的是,在我的实际实现中,训练样本中不重复的词有80000多个,若采用求解状态转移概率的思路,初始化和计算一个80000乘80000的矩阵是非常不现实的,故正确的思路是应像是求解发射概率的思路,即先初始化各个词为 {词1:{},词2:{}},然后根据训练样本统计词与词转移的词频,再除以每个词出现的总次数(需要统计每个词出现的频率,即词1、词2出现的频率)即求解出词与词之间的转移概率。结果应如{词1:{词2:0.03,词3:0.05},词2:{词1:0.02}}的形式。

def save_model(model_path, word_dict):f = open(model_path, 'w')f.write(str(word_dict))f.close()def load_model(model_path):f = open(model_path,'r')a = f.read()word_dict = eval(a)f.close()return word_dictdef init(word_dict):word_trans = {}for word in word_dict:word_trans[word] = {}return word_transif __name__ == '__main__':word_dict = load_model('./model/set_list.txt')word_trans = init(word_dict)count_dict = {}for line in open('../data/train.txt', encoding='utf-8'):words_list = []if line:line = line.strip()wl = line.split(' ')for w in wl:word,tag = w.split('/')words_list.append(word)if word not in count_dict:count_dict[word] = 1else:count_dict[word] += 1for i in range(len(words_list) - 1):if words_list[i+1] not in word_trans[words_list[i]]:word_trans[words_list[i]][words_list[i + 1]] = 1else:word_trans[words_list[i]][words_list[i + 1]] += 1save_model('./model/word_trans.txt', word_trans)save_model('./model/count_dict.txt', word_trans)for key in word_trans.keys():for key1 in word_trans[key].keys():word_trans[key][key1] = word_trans[key][key1]/count_dict[key]save_model('./model/prob_word_trans.txt',word_trans)

3.初始词概率,你懂的,就那么求

def save_model(word_dict,model_path):f = open(model_path,'w')f.write(str(word_dict))f.close()if __name__ == '__main__':start_dict = {}line_index = 0for line in open('../data/train.txt', encoding='utf-8'):if line:line = line.strip()word_list = line.split(' ')init_word,init_tag = word_list[0].split('/')if init_word not in start_dict:start_dict[init_word] = 1else:start_dict[init_word] += 1line_index += 1for key in start_dict:start_dict[key] = start_dict[key] / line_indexsave_model(start_dict,'./model/start_word.txt')

4.实体识别代码

verbiter的原理我上面说过,就是在当前状态下,求解上一最有可能转移至该状态的状态。

class CRF_ner:def __init__(self):trans_path = './model/trans_dict.txt'emit_path = './model/emit_dict.txt'word_trans_path = './model/prob_word_trans.txt'start_word_path = './model/start_word.txt'self.prob_trans = self.load_model(trans_path)self.prob_emit = self.load_model(emit_path)self.prob_word_trans = self.load_model(word_trans_path)self.prob_start_word = self.load_model(start_word_path)def load_model(self,model_path):f = open(model_path,'r')a = f.read()word_dict = eval(a)f.close()return word_dictdef verbiter(self,sent,state_list):V = [{}]path = {}#state_list = ['O', 'B-LOCATION', 'I-LOCATION', 'O-LOCATION', 'B-ORGANIZATION', 'I-ORGANIZATION',#'O-ORGANIZATION', 'B-PERSON', 'B-TIME']#初始化for state in state_list:if self.prob_word_trans.get(sent[0],0) == 0:V[0][state] = self.prob_start_word.get(sent[0],0) + self.prob_emit[state].get(sent[0],0)else:V[0][state] = self.prob_start_word.get(sent[0], 0) + self.prob_emit[state].get(sent[0], 0) + self.prob_word_trans[sent[0]].get(sent[1], 0)path[state] = [state]for i in range(1,len(sent)):V.append({})newpath = {}state_path = []for state in state_list:if i == len(sent) - 1:if self.prob_word_trans.get(sent[i-1], 0) == 0:W = self.prob_emit[state].get(sent[i], 0)else:W = self.prob_word_trans[sent[i - 1]].get(sent[i], 0) + self.prob_emit[state].get(sent[i], 0)else:W = (self.prob_word_trans[sent[i - 1]].get(sent[i], 0) if self.prob_word_trans.get(sent[i-1],0) != 0 else 0) + self.prob_emit[state].get(sent[i],0) + (self.prob_word_trans[sent[i]].get(sent[i + 1], 0) if self.prob_word_trans.get(sent[i],0) != 0 else 0)for state1 in state_list:R = V[i-1][state1] * self.prob_trans[state1].get(state,0)state_path.append((R,state1))if state_path == []:(prob,y) = (0.0,'O')else:(prob,y) = max(state_path)V[i][state] = prob * Wnewpath[state] = path[y] + [state]path = newpath(prob, state) = max([(V[len(sent) - 1][y], y) for y in state_list])return (prob,path[state])def cut(self,sent):print('========开始计算========')state_list = ['O', 'B-LOCATION', 'I-LOCATION', 'O-LOCATION', 'B-ORGANIZATION', 'I-ORGANIZATION','O-ORGANIZATION', 'B-PERSON', 'B-TIME']prob,pos_list = self.verbiter(sent,state_list)result = []sub_result = []for i in range(len(pos_list)-1):if pos_list[i] in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION'] and pos_list[i+1] in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION']:sub_result.append(sent[i])elif pos_list[i] in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION'] and pos_list[i+1] not in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION']:result.append(sub_result)sub_result = []last = len(pos_list) - 1print(pos_list)if pos_list[last-1] in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION'] and pos_list[last] in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION']:sub_result.append(sent[last])result.append(sub_result)elif pos_list[last-1] not in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION'] and pos_list[last] in ['B-ORGANIZATION','I-ORGANIZATION','O-ORGANIZATION']:sub_result.append(sent[last])result.append(sub_result)entities = []for entity_list in result:entity = ''for tmp in entity_list:entity += tmpentities.append(entity)return entitiesif __name__ == '__main__':sent = ['陈','鼎立','毕业','于','西南','科技','大学']# sent = ['中国','政府','要求','美方','遵守','条约']# sent = ['清华大学', '在', '北京市', '海', '淀', '区', '清', '华', '园', '1', '号']# sent = ['清华大学','副','校长','尤政','宣布','成立','人工','智能','研究院','张钹','院士','担任','新','研究院','院长']ce = CRF_ner()result = ce.cut(sent)print(result)

 

以上就是全部内容,各位看官需要注意的是在计算词与词的转移概率之前,需要在训练样本提取不重复的各词作为训练词与词转移概率的前提,在代码中没有给出(因为写完就给删了。。。。。懒的写),没几行,看官可以自行实现。

本人水平较差。若没有使有缘看到此文的看官浪费时间 ,便好。

本文中没有给出CRF的公式详细推导和原理介绍,我觉得给出一个例子用以实现代码这样效果是最好的,若各位看官需要详细学习和了解CRF,嗯,自行百度

 

 

这篇关于基于CRF的命名实体识别思路与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/707525

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

变量与命名

引言         在前两个课时中,我们已经了解了 Python 程序的基本结构,学习了如何正确地使用缩进来组织代码,并且知道了注释的重要性。现在我们将进一步深入到 Python 编程的核心——变量与命名。变量是我们存储数据的主要方式,而合理的命名则有助于提高代码的可读性和可维护性。 变量的概念与使用         在 Python 中,变量是一种用来存储数据值的标识符。创建变量很简单,

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P