本文主要是介绍AtCoder Beginner Contest 206(Sponsored by Panasonic)(补题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
C - Swappable
题意: 给n个数,问有多少对数,1<=i<j<=N, A i A_i Ai!= A j A_j Aj,问有多少对数吗?
思路:
思路1: 先排序,枚举每个 a i a_i ai,然后看有多少个大于 a i a_i ai,大于 a i a_i ai的就是 a j a_j aj,不用找小于 a i a_i ai的,因为小于 a i a_i ai枚举的时候,匹配过 a i a_i ai了,不用重复寻找。
思路2: 可以用所有的数对,减去满足 A i = = A j A_i==A_j Ai==Aj的数量,就是满足的数量。总数就是n*(n-1)/2,再用桶记录其中的数量就行。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 3e5 + 10;
ll a[N];
int main() {ll n;cin >> n;for (int i = 0; i < n; i++) {scanf("%lld", &a[i]);}sort(a, a + n);ll res = 0;for (int i = 0; i < n; i++) {res += (n - (upper_bound(a + i + 1, a + n, a[i]) - a));}cout << res << endl;return 0;
}
#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 10;
#define ll long long
map<int, int> m;int n;int main() {scanf("%d", &n);ll ans = (ll)(n - 1) * n / 2;for (int i = 1; i <= n; i++) {int a;scanf("%d", &a);ans -= (ll)m[a];++m[a];}printf("%lld\n", ans);return 0;
}
D - KAIBUNsyo
题意: 给n个数,有一种操作,就是令数组中所有等于 x x x的数全部转变为 y y y,问最少操作几次,才能形成回文数组。
思路: 把 x x x变成 y y y,可以想成在 x x x和 y y y之间连一条边,代表在一个连通块中,在一个连通块中,代表连通块的数最后都要变成其中一个数(可以直接都变成祖先节点),而要将一个连通块中的数都变成一个数,那就要看连通块中有几个结点,转变次数就是除了祖先节点以为点的数量,也就是看有几个 f a [ i ] ! = i fa[i]!=i fa[i]!=i, f a [ i ] = = i fa[i]==i fa[i]==i都是祖先节点,这样就
每次就是对称的两个点,是不是同一个数字,是否对称,不对称的话,就要放一个连通块中,表示要操作。
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
int fa[N];
int a[N];int find(int x) {if (x != fa[x]) fa[x] = find(fa[x]);return fa[x];
}
void Union(int a, int b) {if (find(a) != find(b)) {fa[find(a)] = find(b);}
}int main() {int n;scanf("%d", &n);for (int i = 1; i <= n; i++) {scanf("%d", &a[i]);}for (int i = 1; i <= N; i++) {fa[i] = i;}for (int l = 1, r = n; l < r; l++, r--) {Union(a[l], a[r]);}int ans = 0;for (int i = 1; i <= N; i++) {ans += (fa[i] != i);}printf("%d\n", ans);return 0;
}
To be continued
如果你有任何建议或者批评和补充,请留言指出,不胜感激
这篇关于AtCoder Beginner Contest 206(Sponsored by Panasonic)(补题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!