three.js各向异性shader实现记录

2024-02-12 14:28

本文主要是介绍three.js各向异性shader实现记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

        • `WebGLMaterials`
        • `ShaderLib`
        • `lights_physical_fragment.glsl`
        • `lights_fragment_maps.glsl`
        • `lights_physical_pars_fragment.glsl`
        • `lights_fragment_begin.glsl`

WebGLMaterials
if ( material.anisotropy > 0 ) {uniforms.anisotropyVector.value.set( material.anisotropy * Math.cos( material.anisotropyRotation ), material.anisotropy * Math.sin( material.anisotropyRotation ) );if ( material.anisotropyMap ) {uniforms.anisotropyMap.value = material.anisotropyMap;refreshTransformUniform( material.anisotropyMap, uniforms.anisotropyMapTransform );}}
ShaderLib
anisotropyVector: { value: /*@__PURE__*/ new Vector2() },
anisotropyMap: { value: null },
anisotropyMapTransform: { value: /*@__PURE__*/ new Matrix3() },

meshphysical.glsl

#ifdef USE_ANISOTROPYuniform vec2 anisotropyVector;#ifdef USE_ANISOTROPYMAPuniform sampler2D anisotropyMap;#endif
#endif
lights_physical_fragment.glsl
#ifdef USE_ANISOTROPY#ifdef USE_ANISOTROPYMAPmat2 anisotropyMat = mat2( anisotropyVector.x, anisotropyVector.y, - anisotropyVector.y, anisotropyVector.x );vec3 anisotropyPolar = texture2D( anisotropyMap, vAnisotropyMapUv ).rgb;vec2 anisotropyV = anisotropyMat * normalize( 2.0 * anisotropyPolar.rg - vec2( 1.0 ) ) * anisotropyPolar.b;#elsevec2 anisotropyV = anisotropyVector;#endifmaterial.anisotropy = length( anisotropyV );if( material.anisotropy == 0.0 ) {anisotropyV = vec2( 1.0, 0.0 );} else {anisotropyV /= material.anisotropy;material.anisotropy = saturate( material.anisotropy );}// Roughness along the anisotropy bitangent is the material roughness, while the tangent roughness increases with anisotropy.material.alphaT = mix( pow2( material.roughness ), 1.0, pow2( material.anisotropy ) );material.anisotropyT = tbn[ 0 ] * anisotropyV.x + tbn[ 1 ] * anisotropyV.y;material.anisotropyB = tbn[ 1 ] * anisotropyV.x - tbn[ 0 ] * anisotropyV.y;#endif
lights_fragment_maps.glsl

#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )#ifdef USE_ANISOTROPYradiance += getIBLAnisotropyRadiance( geometryViewDir, geometryNormal, material.roughness, material.anisotropyB, material.anisotropy );#else
#endif
lights_physical_pars_fragment.glsl

vec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in PhysicalMaterial material ) {vec3 f0 = material.specularColor;float f90 = material.specularF90;float roughness = material.roughness;float alpha = pow2( roughness ); // UE4's roughnessvec3 halfDir = normalize( lightDir + viewDir );float dotNL = saturate( dot( normal, lightDir ) );float dotNV = saturate( dot( normal, viewDir ) );float dotNH = saturate( dot( normal, halfDir ) );float dotVH = saturate( dot( viewDir, halfDir ) );vec3 F = F_Schlick( f0, f90, dotVH );#ifdef USE_IRIDESCENCEF = mix( F, material.iridescenceFresnel, material.iridescence );#endif#ifdef USE_ANISOTROPY// 这里用的 anisotropyT 和 anisotropyB 就是各向异性处理中增加的属性// material.anisotropyT = tbn[ 0 ] * anisotropyV.x + tbn[ 1 ] * anisotropyV.y;// material.anisotropyB = tbn[ 1 ] * anisotropyV.x - tbn[ 0 ] * anisotropyV.y;float dotTL = dot( material.anisotropyT, lightDir );float dotTV = dot( material.anisotropyT, viewDir );float dotTH = dot( material.anisotropyT, halfDir );float dotBL = dot( material.anisotropyB, lightDir );float dotBV = dot( material.anisotropyB, viewDir );float dotBH = dot( material.anisotropyB, halfDir );float V = V_GGX_SmithCorrelated_Anisotropic( material.alphaT, alpha, dotTV, dotBV, dotTL, dotBL, dotNV, dotNL );float D = D_GGX_Anisotropic( material.alphaT, alpha, dotNH, dotTH, dotBH );#elsefloat V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );float D = D_GGX( alpha, dotNH );#endifreturn F * ( V * D );}
void RE_Direct_Physical( const in IncidentLight directLight, const in vec3 geometryPosition, const in vec3 geometryNormal, const in vec3 geometryViewDir, const in vec3 geometryClearcoatNormal, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {//直接镜面反射reflectedLight.directSpecular += irradiance * BRDF_GGX( directLight.direction, geometryViewDir, geometryNormal, material );
}

将RE_Direct_Physical 方法 定义成 RE_Direct 使用

#define RE_Direct				RE_Direct_Physical
lights_fragment_begin.glsl
RE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight )

NUM_POINT_LIGHTS NUM_SPOT_LIGHTS NUM_DIR_LIGHTS 点光源,聚光灯,方向光 这三种 进行每个类型灯光遍历执行大致如下 点光源例

IncidentLight directLight;#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )PointLight pointLight;#if defined( USE_SHADOWMAP ) && NUM_POINT_LIGHT_SHADOWS > 0PointLightShadow pointLightShadow;#endif#pragma unroll_loop_startfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {pointLight = pointLights[ i ];getPointLightInfo( pointLight, geometryPosition, directLight );#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_POINT_LIGHT_SHADOWS )pointLightShadow = pointLightShadows[ i ];directLight.color *= ( directLight.visible && receiveShadow ) ? getPointShadow( pointShadowMap[ i ], pointLightShadow.shadowMapSize, pointLightShadow.shadowBias, pointLightShadow.shadowRadius, vPointShadowCoord[ i ], pointLightShadow.shadowCameraNear, pointLightShadow.shadowCameraFar ) : 1.0;#endifRE_Direct( directLight, geometryPosition, geometryNormal, geometryViewDir, geometryClearcoatNormal, material, reflectedLight );}#pragma unroll_loop_end#endif

这篇关于three.js各向异性shader实现记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/702764

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被