CentOS 7.9安装Tesla M4驱动、CUDA和cuDNN

2024-02-12 11:28

本文主要是介绍CentOS 7.9安装Tesla M4驱动、CUDA和cuDNN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

fbfa22f7e6a080ac7482ed15cc4a457e.gif

正文共:1333 字 21 图,预估阅读时间:2 分钟

上次我们在Windows上尝试用Tesla M4配置深度学习环境TensorFlow识别GPU难道就这么难吗?还是我的GPU有问题?,但是失败了。考虑到Windows本身就会调用图形显示,可能会有影响,所以我们本次换用Linux系统(CentOS 7.9)来尝试一下。

a75141b46acf3600d798e1c33523472f.png

1、下载软件

结合上次的经验教训,我们本次先确定合适的CUDA(Compute Unified Device Architecture) Toolkit的版本。

Tesla M4 GPU(GM206GL)是一款基于Maxwell架构的入门级Tesla GPU,发布于2015年6月切换到WDDM模式,Tesla M4可以用于本地显示输出了!。由于GPU高速发展,2016年Nvidia就发布了基于Pascal架构的Tesla P4,其在性能和功耗方面相比Tesla M4都有大幅提升,因此逐渐取代Tesla M4成为主流;2018年,Nvidia又发布了基于Turing架构的Tesla V100 GPU,在性能和功耗方面又有大幅提升,并逐渐取代了Tesla P4成为主流。一般来讲,认为Tesla M4的生命周期大约3年,即从2015年发布到2018年淘汰。

Tesla M4使用的是Maxwell架构,但因为其生命周期较短,所以官网介绍并非所有Maxwell架构GPU都支持所有CUDA版本和cuDNN版本。我们在Nvidia官方的CUDA兼容性列表中可以查看:

https://developer.nvidia.com/cuda-gpus

7d40cedb720a30c549479bbc95898712.png

可以看到,Tesla M系列GPU只列出了M40和M60两款,但是M40和M4的主要差别在于规格和性能差异,所以理论上讲,M4应该也算是支持的。

然后我们到CUDA的下载页面找一下合适的版本。

https://developer.nvidia.com/cuda-toolkit-archive

3fc7bc2a54dad134d3936b0684c05a44.png

根据时间推断,应该是介于2015年到2019年中间,符合要求的最低版本应该不低于7.0,最高版本应该不低于10.0,网传是11.7版本。为了保险起见,我们先下载2018年9月发布的10.0版本试一下。

695808d7b44a884662c25e51ef1899fd.png

CUDA支持local(本地)和network(网络)两种安装方式。本地安装程序是自包含的,包括每个组件。它是一个大文件(runfile文件大小为2.0 GB,补丁包为3.3 MB;rpm文件大小为1.9 GB,补丁包为3.6 MB),只需要从互联网上下载一次,就可以安装在多个系统上,推荐在低带宽或隔绝互联网连接环境下试用。

而网络安装程序是一个小型安装程序客户端(3.3 KB),它会在安装过程中下载所需的组件。下载速度更快,但每次新安装时都需要重新下载每个组件。我先给大家简单展示一下使用网络安装程序安装的效果。

rpm -i cuda-repo-rhel7-10.0.130-1.x86_64.rpm
yum clean all
yum install -y cuda

f387e615ca6a412ff1165715f6530a7a.png

可以看到,安装文件还是比较大的,下载文件大小为4.3 GB,比本地下载的文件还大,安装占用空间为8.1 GB,主要是下载时间太长。

cd9ee959ff91a5dc17d8c33c259999a7.png

所以,还是推荐大家换用runfile或rpm进行安装。

确认完CUDA版本,就可以去下载GPU驱动了,在下载页面,我们选择型号为Tesla M4,操作系统选择为RHEL 7,CUDA版本选择为10.0,然后搜索驱动。

181201d5c403437fb0b67ddcbeb9b064.png

在驱动下载页面,下载好驱动文件备用。

212f8b0a677e970f2c79af0daa598924.png

对应的,还建议安装一下cuDNN(CUDA Deep Neural Network library)扩展,列表页面如下:

https://developer.nvidia.com/rdp/cudnn-archive

dd620ce68161e76cf2b8662a1a657a8f.png

因为GPU驱动是在2019年9月份发布的,在这中间,我们找几个和CUDA 10.0相匹配、并且发布时间在2019年的,最终选定同样是2019年发布的7.6.4版本,应该是可以匹配的。

f1dc84a497660adc83e5638be2b86812.png

选择下载Linux版本。

525c7246f78c34b55371918aea60c7a7.png

2、检查配置系统环境

软件都下载好之后,我们先检查一下系统。在安装NVIDIA驱动之前,需要确保安装了epel-release以便后续安装依赖包。

yum install -y epel-release

d15a36caad7bc69f8cee21120116a3b7.png

然后,更新系统以确保系统是最新的软件包。

yum list && yum update -y

驱动安装可能需要特定的内核头文件和DKMS(Dynamic Kernel Module Support)模块,安装开发工具包,并根据实际内核版本安装相应的kernel-devel包。

yum groupinstall "Development Tools" -y
yum install -y kernel-devel-$(uname -r) dkms

接下来,将下载的GPU驱动、CUDA和cuDNN上传到主机。

95754e1d9b78bfda01f1968bbdb0859d.png

c2b39a196f6e832e1168310423022cf7.png

3、安装GPU驱动

先安装GPU驱动。

chmod +x NVIDIA-Linux-x86_64-410.129-diagnostic.run
./NVIDIA-Linux-x86_64-410.129-diagnostic.run --dkms --no-opengl-files

0c44f007562616a5c0f12b5a3ebe8e95.png

询问是否使用DKMS注册,默认使用YES。

042d9f661ed11bf01458544c54e8b370.png

提示信息,直接回车。

6d143c52755743fd205caa0296a4c9bb.png

是否安装32位的库,默认安装上吧。

67cd2448c4550e207cdac62bca293e63.png

等待驱动安装完成。

ea026813417eecd3f61ca227f7857ab2.png

重启虚拟机,检查驱动是否安装成功。

nvidia-smi

be3721e8db1b3a64c6d6a6cf282fc495.png

能够正常显示GPU型号、规格以及传感器信息。

ec5386bf20a82a8c42210d676936c4ab.png

4、安装CUDA及cuDNN

参考CUDA的官方指导,安装软件。

chmod +x cuda_10.0.130_410.48_linux.run
./cuda_10.0.130_410.48_linux.run

展示完EULA并接受,之后配置各项参数。

d093ec63e3ba861ddfef3b23e012ca80.png

安装完CUDA Toolkit之后,按照提示,向环境变量中添加文件路径。

echo 'export PATH=/usr/local/cuda-10.0/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc

bf130884db197a83677e129b9a4f416b.png

检查CUDA是否安装成功。

97791b2acc5c81d84f027920c49452a4.png

cuDNN在Linux下的安装和Windows一样,只要将文件解压,然后复制到CUDA Toolkit目录下即可。

tar -zxf cudnn-10.0-linux-x64-v7.6.4.38.tgz
cp -avr cuda/ /usr/local/cuda-10.0/

3aab97d653abc0ee18b300b547970819.png

至此,软件安装完成。

2b4b5309114dd2cdb8d77f8c02b3a21a.gif

长按二维码
关注我们吧

77b87bf8e61380ddc13397af2b532187.jpeg

dd0835df58af7edd21e30b0affc3062e.png

Windows部署TensorFlow后识别GPU失败,原因是啥?

TensorFlow识别GPU难道就这么难吗?还是我的GPU有问题?

轻轻松松达到1.8 Gbps,果然HCL还是搭配高档电脑更好使

将Juniper虚拟防火墙vSRX导入EVE-NG

Juniper虚拟防火墙vSRX配置防火墙策略实现业务转发

配置VMware实现从服务器到虚拟机的一键启动脚本

Ubuntu 23.10通过APT安装Open vSwitch

使用Python脚本实现SSH登录设备

VMWare ESXi中,不同的虚拟网卡性能竟然能相差三倍!

VMWare ESXi 7.0的磁盘空间莫名少了120 GB?看这里!

同一个问题,Gemini、ChatGPT、Copilot、通义千问和文心一言会怎么答?

CentOS 7配置Bonding网卡绑定

H3C交换机S6850配置M-LAG基本功能

H3C交换机S6850配置M-LAG三层转发

Windows Server调整策略实现999999个远程用户用时登录

IPv6从入门到精通

这篇关于CentOS 7.9安装Tesla M4驱动、CUDA和cuDNN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/702497

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

Linux(Centos7)安装Mysql/Redis/MinIO方式

《Linux(Centos7)安装Mysql/Redis/MinIO方式》文章总结:介绍了如何安装MySQL和Redis,以及如何配置它们为开机自启,还详细讲解了如何安装MinIO,包括配置Syste... 目录安装mysql安装Redis安装MinIO总结安装Mysql安装Redis搜索Red

python安装完成后可以进行的后续步骤和注意事项小结

《python安装完成后可以进行的后续步骤和注意事项小结》本文详细介绍了安装Python3后的后续步骤,包括验证安装、配置环境、安装包、创建和运行脚本,以及使用虚拟环境,还强调了注意事项,如系统更新、... 目录验证安装配置环境(可选)安装python包创建和运行Python脚本虚拟环境(可选)注意事项安装

gradle安装和环境配置全过程

《gradle安装和环境配置全过程》本文介绍了如何安装和配置Gradle环境,包括下载Gradle、配置环境变量、测试Gradle以及在IntelliJIDEA中配置Gradle... 目录gradle安装和环境配置1 下载GRADLE2 环境变量配置3 测试gradle4 设置gradle初始化文件5 i

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

mac安装redis全过程

《mac安装redis全过程》文章内容主要介绍了如何从官网下载指定版本的Redis,以及如何在自定义目录下安装和启动Redis,还提到了如何修改Redis的密码和配置文件,以及使用RedisInsig... 目录MAC安装Redis安装启动redis 配置redis 常用命令总结mac安装redis官网下