动手学深度学习学习笔记tf2.0版(5.8 网络中的网络(NiN))

2024-02-12 05:32

本文主要是介绍动手学深度学习学习笔记tf2.0版(5.8 网络中的网络(NiN)),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NiN学习笔记

github代码地址:https://github.com/taichuai/d2l_zh_tensorflow2.0

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import tensorflow as tf
print(tf.__version__)for gpu in tf.config.experimental.list_physical_devices('GPU'):tf.config.experimental.set_memory_growth(gpu, True)
def nin_block(num_channels, kernel_size, strides, padding):blk = tf.keras.models.Sequential()blk.add(tf.keras.layers.Conv2D(num_channels, kernel_size,strides=strides, padding=padding, activation='relu')) blk.add(tf.keras.layers.Conv2D(num_channels, kernel_size=1,activation='relu')) blk.add(tf.keras.layers.Conv2D(num_channels, kernel_size=1,activation='relu'))    return blk

在这里插入图片描述

net = tf.keras.models.Sequential()
net.add(nin_block(96, kernel_size=11, strides=4, padding='valid'))
net.add(tf.keras.layers.MaxPool2D(pool_size=3, strides=2))
net.add(nin_block(256, kernel_size=5, strides=1, padding='same'))
net.add(tf.keras.layers.MaxPool2D(pool_size=3, strides=2))
net.add(nin_block(384, kernel_size=3, strides=1, padding='same'))
net.add(tf.keras.layers.MaxPool2D(pool_size=3, strides=2))
net.add(tf.keras.layers.Dropout(0.5))
net.add(nin_block(10, kernel_size=3, strides=1, padding='same'))
net.add(tf.keras.layers.GlobalAveragePooling2D())
net.add(tf.keras.layers.Flatten())
X = tf.random.uniform((1,224,224,1))
for blk in net.layers:X = blk(X)print(blk.name, 'output shape:\t', X.shape)

可以得到
在这里插入图片描述
获取数据和训练模型
我们依然使用Fashion-MNIST数据集来训练模型。NiN的训练与AlexNet和VGG的类似,注意如果使用 Adam 优化器,学习率先使用较小进行训练,看看效果,较大了可能无法收敛(这里取 lr=1e-6)

# 获取数据
from tensorflow.keras.datasets import fashion_mnist
import matplotlib.pyplot as plt(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()# 数据预处理
def data_scale(x, y):x = tf.cast(x, tf.float32)x = x / 255.0x = tf.reshape(x, (x.shape[0], x.shape[1], 1))x = tf.image.resize_with_pad(image=x, target_height=224,target_width=224)return x, y
# 由于笔记本训练太慢了,使用1000条数据,跑一下先,算力够的可以直接使用全部数据更加明显
train_db = tf.data.Dataset.from_tensor_slices((x_train[0:5000],y_train[0:5000])).shuffle(20).map(data_scale).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test[0:1000],y_test[0:1000])).shuffle(20).map(data_scale).batch(32)
# 定义优化器和损失函数
optimizer = tf.keras.optimizers.Adam(lr=1e-5)
loss = tf.keras.losses.sparse_categorical_crossentropy
net.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
net.fit_generator(train_db, epochs=5, validation_data=test_db)    # 这里就不跑太多轮了,有机器可以自己调参跑个好的结果
net.summary()
# 可以像alexnet一样,打印中间特征层看一下
X = next(iter(train_db))[0][0]def show(X):X_ = tf.squeeze(X)plt.imshow(X_)plt.figure(figsize=(5,5))plt.show()X = tf.expand_dims(X, axis=0)
# 打印前 8 层的部分特征图
for blk in net.layers[0:8]:print(blk.name,'itput shape:\t',X.shape)show(X[0,:,:,0])X = blk(X)print(blk.name, 'output shape:\t', X.shape)for i in range(3):show(X[0,:,:,i])

这篇关于动手学深度学习学习笔记tf2.0版(5.8 网络中的网络(NiN))的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701755

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio