Advanced Lane Detection源码解读(二)

2024-02-12 04:32

本文主要是介绍Advanced Lane Detection源码解读(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.2.2 二次曲线拟合 line_fit.py

  1. 引入相关的包
import numpy as np
import cv2
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import pickle
from combined_thresh import combined_thresh
from perspective_transform import perspective_transform
  1. 由二值图像进行曲线拟合(首帧)
    line_fit(binary_warped)函数的实现步骤
def line_fit(binary_warped):"""Find and fit lane lines"""# Assuming you have created a warped binary image called "binary_warped"# Take a histogram of the bottom half of the image# 求图像下半部分的直方图,np.sum( , axis=0),# 当axis为0时,是压缩行,即将每一列的元素相加,将矩阵压缩为一行# 当axis为1时,是压缩列,即将每一行的元素相加,将矩阵压缩为一列(这里的一列是为了方便理解说的,实际上,在控制台的输出中,仍然是以一行的形式输出的)histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0)# Create an output image to draw on and visualize the resultout_img = (np.dstack((binary_warped, binary_warped, binary_warped))*255).astype('uint8')# Find the peak of the left and right halves of the histogram# These will be the starting point for the left and right linesmidpoint = np.int(histogram.shape[0]/2)leftx_base = np.argmax(histogram[100:midpoint]) + 100 # 在100:midpoint范围内寻找的直方图的最大值点,将其x坐标存为leftx_base rightx_base = np.argmax(histogram[midpoint:-100]) + midpoint # midpoint:-100范围内寻找的直方图的最大值点,将其x坐标存为rightx_base # Choose the number of sliding windows# 选择图像上滑动窗口的数量nwindows = 9 # Set height of windows# 设置滑动窗口的高度=图像高度/滑窗数量window_height = np.int(binary_warped.shape[0]/nwindows)# Identify the x and y positions of all nonzero pixels in the image# 找到二值图中所有非零像素的坐标。numpy.nonzero(),当调用对象为二维数组时,返回的为长度为2的元组。nonzero = binary_warped.nonzero()nonzeroy = np.array(nonzero[0])nonzerox = np.array(nonzero[1])# Current positions to be updated for each windowleftx_current = leftx_baserightx_current = rightx_base# Set the width of the windows +/- marginmargin = 100# Set minimum number of pixels found to recenter windowminpix = 50# Create empty lists to receive left and right lane pixel indicesleft_lane_inds = []right_lane_inds = []# Step through the windows one by onefor window in range(nwindows):# Identify window boundaries in x and y (and right and left)# 得到滑窗四个角点的坐标win_y_low = binary_warped.shape[0] - (window+1)*window_heightwin_y_high = binary_warped.shape[0] - window*window_heightwin_xleft_low = leftx_current - marginwin_xleft_high = leftx_current + marginwin_xright_low = rightx_current - marginwin_xright_high = rightx_current + margin# Draw the windows on the visualization imagecv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,255,0), 2)cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,255,0), 2)# Identify the nonzero pixels in x and y within the window# 挑选出位于滑窗内的非零像素点good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]# Append these indices to the listsleft_lane_inds.append(good_left_inds)right_lane_inds.append(good_right_inds)# If you found > minpix pixels, recenter next window on their mean positionif len(good_left_inds) > minpix:leftx_current = np.int(np.mean(nonzerox[good_left_inds]))if len(good_right_inds) > minpix:rightx_current = np.int(np.mean(nonzerox[good_right_inds]))# Concatenate the arrays of indicesleft_lane_inds = np.concatenate(left_lane_inds)right_lane_inds = np.concatenate(right_lane_inds)# Extract left and right line pixel positionsleftx = nonzerox[left_lane_inds]lefty = nonzeroy[left_lane_inds]rightx = nonzerox[right_lane_inds]righty = nonzeroy[right_lane_inds]# Fit a second order polynomial to eachleft_fit = np.polyfit(lefty, leftx, 2)right_fit = np.polyfit(righty, rightx, 2)# Return a dict of relevant variablesret = {}ret['left_fit'] = left_fitret['right_fit'] = right_fitret['nonzerox'] = nonzeroxret['nonzeroy'] = nonzeroyret['out_img'] = out_imgret['left_lane_inds'] = left_lane_indsret['right_lane_inds'] = right_lane_indsreturn ret
  1. 由二值图像进行曲线拟合(非首帧)
def tune_fit(binary_warped, left_fit, right_fit):"""Given a previously fit line, quickly try to find the line based on previous lines"""# Assume you now have a new warped binary image# from the next frame of video (also called "binary_warped")# It's now much easier to find line pixels!nonzero = binary_warped.nonzero()nonzeroy = np.array(nonzero[0])nonzerox = np.array(nonzero[1])margin = 100left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin)))right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin)))# Again, extract left and right line pixel positionsleftx = nonzerox[left_lane_inds]lefty = nonzeroy[left_lane_inds]rightx = nonzerox[right_lane_inds]righty = nonzeroy[right_lane_inds]# If we don't find enough relevant points, return all None (this means error)min_inds = 10if lefty.shape[0] < min_inds or righty.shape[0] < min_inds:return None# Fit a second order polynomial to eachleft_fit = np.polyfit(lefty, leftx, 2)right_fit = np.polyfit(righty, rightx, 2)# Generate x and y values for plottingploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]# Return a dict of relevant variablesret = {}ret['left_fit'] = left_fitret['right_fit'] = right_fitret['nonzerox'] = nonzeroxret['nonzeroy'] = nonzeroyret['left_lane_inds'] = left_lane_indsret['right_lane_inds'] = right_lane_indsreturn ret
  1. 可视化1
def viz1(binary_warped, ret, save_file=None):"""Visualize each sliding window location and predicted lane lines, on binary warped imagesave_file is a string representing where to save the image (if None, then just display)"""# Grab variables from ret dictionaryleft_fit = ret['left_fit']right_fit = ret['right_fit']nonzerox = ret['nonzerox']nonzeroy = ret['nonzeroy']out_img = ret['out_img']left_lane_inds = ret['left_lane_inds']right_lane_inds = ret['right_lane_inds']# Generate x and y values for plottingploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]plt.imshow(out_img)plt.plot(left_fitx, ploty, color='yellow')plt.plot(right_fitx, ploty, color='yellow')plt.xlim(0, 1280)plt.ylim(720, 0)if save_file is None:plt.show()else:plt.savefig(save_file)plt.gcf().clear()
  1. 可视化2
def viz2(binary_warped, ret, save_file=None):"""Visualize the predicted lane lines with margin, on binary warped imagesave_file is a string representing where to save the image (if None, then just display)"""# Grab variables from ret dictionaryleft_fit = ret['left_fit']right_fit = ret['right_fit']nonzerox = ret['nonzerox']nonzeroy = ret['nonzeroy']left_lane_inds = ret['left_lane_inds']right_lane_inds = ret['right_lane_inds']# Create an image to draw on and an image to show the selection windowout_img = (np.dstack((binary_warped, binary_warped, binary_warped))*255).astype('uint8')window_img = np.zeros_like(out_img)# Color in left and right line pixelsout_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]# Generate x and y values for plottingploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0])left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]# Generate a polygon to illustrate the search window area# And recast the x and y points into usable format for cv2.fillPoly()margin = 100  # NOTE: Keep this in sync with *_fit()left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))])left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin, ploty])))])left_line_pts = np.hstack((left_line_window1, left_line_window2))right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))])right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin, ploty])))])right_line_pts = np.hstack((right_line_window1, right_line_window2))# Draw the lane onto the warped blank imagecv2.fillPoly(window_img, np.int_([left_line_pts]), (0,255, 0))cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0))result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0)plt.imshow(result)plt.plot(left_fitx, ploty, color='yellow')plt.plot(right_fitx, ploty, color='yellow')plt.xlim(0, 1280)plt.ylim(720, 0)if save_file is None:plt.show()else:plt.savefig(save_file)plt.gcf().clear()
  1. 计算曲线
def calc_curve(left_lane_inds, right_lane_inds, nonzerox, nonzeroy):"""Calculate radius of curvature in meters"""y_eval = 719  # 720p video/image, so last (lowest on screen) y index is 719# Define conversions in x and y from pixels space to metersym_per_pix = 30/720 # meters per pixel in y dimensionxm_per_pix = 3.7/700 # meters per pixel in x dimension# Extract left and right line pixel positionsleftx = nonzerox[left_lane_inds]lefty = nonzeroy[left_lane_inds]rightx = nonzerox[right_lane_inds]righty = nonzeroy[right_lane_inds]# Fit new polynomials to x,y in world spaceleft_fit_cr = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2)right_fit_cr = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2)# Calculate the new radii of curvatureleft_curverad = ((1 + (2*left_fit_cr[0]*y_eval*ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])# Now our radius of curvature is in metersreturn left_curverad, right_curverad
  1. 计算车辆偏移道路中心
def calc_vehicle_offset(undist, left_fit, right_fit):"""Calculate vehicle offset from lane center, in meters"""# Calculate vehicle center offset in pixelsbottom_y = undist.shape[0] - 1bottom_x_left = left_fit[0]*(bottom_y**2) + left_fit[1]*bottom_y + left_fit[2]bottom_x_right = right_fit[0]*(bottom_y**2) + right_fit[1]*bottom_y + right_fit[2]vehicle_offset = undist.shape[1]/2 - (bottom_x_left + bottom_x_right)/2# Convert pixel offset to metersxm_per_pix = 3.7/700 # meters per pixel in x dimensionvehicle_offset *= xm_per_pixreturn vehicle_offset
  1. 最终显示
def final_viz(undist, left_fit, right_fit, m_inv, left_curve, right_curve, vehicle_offset):"""Final lane line prediction visualized and overlayed on top of original image"""# Generate x and y values for plottingploty = np.linspace(0, undist.shape[0]-1, undist.shape[0])left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]# Create an image to draw the lines on#warp_zero = np.zeros_like(warped).astype(np.uint8)#color_warp = np.dstack((warp_zero, warp_zero, warp_zero))color_warp = np.zeros((720, 1280, 3), dtype='uint8')  # NOTE: Hard-coded image dimensions# Recast the x and y points into usable format for cv2.fillPoly()pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])pts = np.hstack((pts_left, pts_right))# Draw the lane onto the warped blank imagecv2.fillPoly(color_warp, np.int_([pts]), (0,255, 0))# Warp the blank back to original image space using inverse perspective matrix (Minv)newwarp = cv2.warpPerspective(color_warp, m_inv, (undist.shape[1], undist.shape[0]))# Combine the result with the original imageresult = cv2.addWeighted(undist, 1, newwarp, 0.3, 0)# Annotate lane curvature values and vehicle offset from centeravg_curve = (left_curve + right_curve)/2label_str = 'Radius of curvature: %.1f m' % avg_curveresult = cv2.putText(result, label_str, (30,40), 0, 1, (0,0,0), 2, cv2.LINE_AA)label_str = 'Vehicle offset from lane center: %.1f m' % vehicle_offsetresult = cv2.putText(result, label_str, (30,70), 0, 1, (0,0,0), 2, cv2.LINE_AA)return result

这篇关于Advanced Lane Detection源码解读(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701670

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get