2024牛客寒假算法基础集训营3

2024-02-11 11:04

本文主要是介绍2024牛客寒假算法基础集训营3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

感觉有些题是有难度,但是是我花时间想能想的出来的题目,总体来说做的很爽,题目也不错。个人总结了几个做题技巧,也算是提醒自己。

1.多分类讨论

2.从特殊到一般,便于找规律。例如有一组数,有奇数和偶数,那我们可以构造一组数据全是偶数,观察其规律,然后插入一个奇数,再观察其规律。

3.很多编程题都涉及到数学知识,可以根据题意列出公式,然后试着把这个公式变形,没准有惊喜。

简单题

智乃与瞩目狸猫、幸运水母、月宫龙虾

签到题 

void solve() {string s1, s2; cin >> s1 >> s2;int span = 'A' - 'a';if (s1[0] >= 'a' && s1[0] <= 'z') s1[0] += span;if (s2[0] >= 'a' && s2[0] <= 'z') s2[0] += span;if (s1[0] == s2[0]) cout << "Yes" << endl;else cout << "No" << endl;
}

智乃的36倍数(easy version)

数据量这么小,暴力就完事。用上atol和c_str函数就行 

string s[N];
void solve() {int n; cin >> n;rep(i, 1, n) cin >> s[i];int ans = 0;rep(i, 1, n) {rep(j, i + 1, n) {string t1 = s[i] + s[j];string t2 = s[j] + s[i];int k1 = atol(t1.c_str());int k2 = atol(t2.c_str());if (k1 % 36 == 0)ans++;if (k2 % 36 == 0)ans++;}}cout << ans << endl;
}

chino's bubble sort and maximum subarray sum(easy version)

做的时候没看清题目,没关注到k只能是0和1,搞得我想了半天觉得好难,发现了之后就简单多了。

最关键的是怎么球最大字段和,这个一下子就能想到是dp,很经典的题目了。

int a[N], dp[1005];
int n, k;
int ans = -inf;
void check() {//找到最大子段和for (int i = 1; i <= n; i++) {dp[i] = max(dp[i - 1] + a[i], a[i]);ans = max(ans, dp[i]);}}void solve() {cin >> n >> k;rep(i, 1, n) cin >> a[i];if (k == 0) check();else {for (int i = 1; i < n; i++) {swap(a[i], a[i + 1]);check();swap(a[i], a[i + 1]);}}cout << ans << endl;
}

中等题

智乃的数字手串

妥妥的诈骗题!!!我总结了以往的诈骗题规律,诈骗题一般都是博弈论(贪心),然后要你输出yes或no,或者让你输出哪个人赢,这种诈骗题代码简单到超乎想象,而且经常是跟判断奇偶性有关。所以我们可以直接去猜答案。

正经分析

首先,偶 = 偶 + 偶 = 奇 + 奇;奇 + 偶 != 偶。

总结一下胜利的条件:(1)拿走最后一个,让对方没得拿  (2)通过交换的操作,使剩下的数没办法拿

什么情况下我们可以通过(1)胜利呢?不好分析,所以先分析(2)。

发现当我们交换成 “奇 偶 奇 偶 ... 偶”或者 “偶 奇 偶 奇 偶 ... 奇” 时我们就通过(2)胜利了。

而可以观察到这两种情况n都是偶数,易证当n是奇数时,一定是有数字可以拿的,当n是偶数的时候不一定有数字可以拿(注意是不一定)。

那么当n为奇数时,qcjj拿走一个数。此时n-1是偶数,我们就假设zn有数字可以拿。此时n-2是奇数,qcjj一定有数字可以拿。以此类推。

易证,当n为奇数qcjj始终有数字可以拿,而且qcjj是拿走最后一个数字的人,必赢。

反之亦然,n为偶数zn必赢。

#include <iostream>
using namespace std;//诈骗题
int main()
{    int T;cin>>T;while (T--){int n;int x;cin>>n;for (int i=1;i<=n;++i)cin>>x;if (n&1)cout<<"qcjj"<<'\n';elsecout<<"zn"<<'\n';}return 0;
}

智乃的比较函数

这题我本来想放在简单题那里的,因为真的好简单,居然才六百多个人做出来有点惊讶。下面代码可以通过normal version。

思路:直接三重循环枚举a1,a2,a3所有的情况。为什么能枚举呢,因为这三个数具体大小根本不重要,可以任意取,只要能体现他们之间大小关系的所有情况就行了,例如a1>a2>a3,a1=a2>a3等等所有情况。

然后用每种情况去测试n组cmp有没有矛盾,只要有一种情况没有矛盾就是yes。

struct Node {int x, y, z;
}node[N];
int n;
int a[10];
bool check() {rep(i, 1, n) {if (a[node[i].x] < a[node[i].y] && node[i].z == 0) {return false;}if (a[node[i].x] >= a[node[i].y] && node[i].z == 1) {return false;}}return true;
}
void solve() {cin >> n;rep(i, 1, n) {cin >> node[i].x >> node[i].y >> node[i].z;}int f = 0;rep(i, 1, 3) {//a1rep(j, 1, 3) {//a2rep(k, 1, 3) {//a3a[1] = i; a[2] = j; a[3] = k;if (check()) {f = 1;}}}}if (f) cout << "Yes" << endl;else cout << "No" << endl;}

难题

智乃的“黑红树”

个人认为这题比 智乃的36倍数(normal version) 简单,因为这题就是一个模拟建树,自己举出几个样例找找规律还是比较容易的,就是细节会多一点,但下一题考察思维不太容易想到。

分析:

1.是否能建树?

我们可以注意到题中说“如果有子节点,那么一定同时存在两个子节点”,说明要么左孩子右孩子都有,要么没有孩子。根结点是黑色的,因此如果可以建树,黑色结点数一定奇数,红色结点数一定是偶数。但这显然还不够严谨,因为如果有1个黑色结点,100个红色结点,也没法建树。经过简单思考易证b >= r / 2 && b <= 1 + 2 * r才可以建树。如下

if (b % 2 == 1 && r % 2 == 0 && b >= r / 2 && b <= 1 + 2 * r) cout<<"Yes"<<endl;
else cout<<"No"<<endl;

2.怎么建树?

按照“完全二叉树”的结构来建树。这样的好处是每个孩子的序号都是从小到大,如果一个根结点有孩子的话,就从小到大输出就行,如果没有就输出-1。

而且孩子的序号也可以确定,因为 lchild = 2*root,rchild = lchild + 1。假如lchild>n或者当前的红/黑结点不够放了,那么root就是没有孩子的。

void solve() {int r, b; cin >> b >> r;int n = r + b;if (b % 2 == 1 && r % 2 == 0 && b >= r / 2 && b <= 1 + 2 * r) {b--;int f = 0;int cur;int level = 1;for (int i = 1; i <= n; i++) {//level为奇数是在为黑层分配红孩子int lc = i * 2, rc = lc + 1;if ((r == 0 || b == 0) && !f) {f = 1;cur = lc;}if (f) {if (cur > n) cout << -1 << " -1" << endl;else if (level % 2 && r == 0) cout << "-1 -1" << endl;//当前在放置红结点,但是红结点没有了else if (level % 2 == 0 && b == 0) cout << "-1 -1" << endl;//跟上面同理else {cout << cur; cur++;cout << " " << cur << endl; cur++;}}else {//红黑结点数都 > 0cout << lc << " " << rc << endl;if (level % 2) r -= 2;else b -= 2;}if (i == pow(2, level) - 1) level++;}}else {cout << "No" << endl;}}

另一种更简单的做法,利用队列。

因为我们要按“完全二叉树”的模式建树,也就是从上到下,从左往右建树。这个可以想到遍历二叉树,用的是队列

void solve() {int b, r; cin >> b >> r;queue<int> q;//1代表黑,0代表红q.push(1);if (b % 2 == 1 && r % 2 == 0 && b >= r / 2 && b <= 1 + 2 * r) {cout << "Yes" << endl;b--;int cur = 2;while (!q.empty()) {int t = q.front(); q.pop();if (t == 1) {//要给它红孩子if (r == 0) cout << "-1 -1" << endl;else {cout << cur; cur++;cout << " " << cur << endl; cur++;q.push(0);q.push(0);r -= 2;}}else {if (b == 0) cout << "-1 -1" << endl;else {cout << cur; cur++;cout << " " << cur << endl; cur++;q.push(1);q.push(1);b -= 2;}}}}else cout << "No" << endl;}

 智乃的36倍数(normal version)

分析:看到题目的时候想,36的倍数都有什么特点,因为之前做过一道题好像也是关于什么的倍数,是有规律可循的,但在这题不行,要另找思路。

这题的正确思路是列出式子,然后变形,涉及到模运算的变换公式-CSDN博客。

对于(ai,aj)组成的数,若是36的倍数,列出

(ai*10^{k} + aj) %36 = 0,k是aj的位数

[(ai*10^{k})%36 + aj%36] % 36 = 0

[ [(ai%36)*(10^{k}%36)] % 36 + aj%36 ] %36 = 0

从1-n枚举每一个数当aj,去查询有没有 ai 满足 [(ai%36)*(10^{k}%36)] % 36 = 36 - aj%36。

事先用哈希表存每个数%36的结果,这样查询的时候就从哈希表的1-35找

总的时间复杂度是O(n)

//0是任何数的倍数
string s[N];
int a[N], b[37];
void solve() {int n; cin >> n;rep(i, 1, n) {cin >> s[i];a[i] = atol(s[i].c_str());b[a[i] % 36]++;}int ans = 0;rep(j, 1, n) {int k = s[j].size();int pj = a[j] % 36;int key = (36 - pj) % 36;int tpm = (int)pow(10, k) % 36;//ten_pow_modfor (int i = 0; i <= 35; i++) {if ((i * tpm) % 36 == key) {ans += b[i];if (pj == i) ans--;}}}cout << ans << endl;
}

这篇关于2024牛客寒假算法基础集训营3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/699624

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1