LLM之LangChain(七)| 使用LangChain,LangSmith实现Prompt工程ToT

2024-02-11 10:04

本文主要是介绍LLM之LangChain(七)| 使用LangChain,LangSmith实现Prompt工程ToT,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       如下图所示,LLM仍然是自治代理的backbone,可以通过给LLM增加以下模块来增强LLM功能:

  • Prompter Agent
  • Checker Module
  • Memory module
  • ToT controller

       当解决具体问题时,这些模块与LLM进行多轮对话。这是基于LLM的自治代理的典型情况,其中动态创建链并按顺序执行,同时多次轮询LLM。

       下图是LangSmith[1]的界面,从图中可以看到使用的tokens总数以及两个延迟类别。

       此图显示了Trace部分,其中包含为该代理创建的完整链,以及输入和输出。LangSmith在链的每一步都给出了详细的分解,包括成本(tokens)和延迟。

       会话和状态历史记录(上下文)存储在内存模块中,这使代理可以参考思维过程的先前部分,并可能从历史记忆采取不同的路线。

      为了验证ToT技术的有效性,本文实现了一个基于ToT的代理来解决数独难题。

论文[2]实验结果表明,ToT框架可以显著提高数独解谜的成功率

       论文指出的一个漏洞是LLM是基于前面的序列生成内容,而忽略了向后编辑。然而,当我们人类解决一个问题时,如果派生的步骤不正确,我们很可能会回溯到以前的迭代。这种回溯方法否定了LLM达到不确定或无答案场景的危险。

       其次,为了建立确保正确性,我们人类的一种做法是在解决问题的每一步都进行测试,这确保了最终解决方案的可信度。本文统计了自回归语言模型在基于以前的token生成新token时,不会显式执行逻辑正确性检查,这限制了LLM纠正自身错误的能力。随着模型生成更多的tokens,一个小错误可能会被放大,这通常被称为级联。因此这会导致生成质量下降,并使其难以从错误中恢复。级联很早就被认为是手动创建提示链的一种危险。然而,考虑到自主代理在运行中创建了一系列提示,它仍然容易受到级联的影响。

该策略[2]通过LLM和提示器代理之间的多轮对话来解决问题。

      上图显示了四种方法的成功率:zero-shot(zs)、one-shot(os)、few-shot(fs)和Tree-of-Thought(tot)。

       以下是ToT代理的完整代码,您可以将其复制并粘贴到笔记本中。您需要更新的只是OpenAI API密钥和LangSmith API密钥。

pip install langchainpip install langchain_experimentalpip install -U langsmithpip install openai#######import osfrom uuid import uuid4unique_id = uuid4().hex[0:8]os.environ["LANGCHAIN_TRACING_V2"] = "true"os.environ["LANGCHAIN_PROJECT"] = f"Agent Tot"os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"os.environ["LANGCHAIN_API_KEY"] = "xxxxxxxxxxxxxxxxxxxxxxxx"os.environ['OPENAI_API_KEY'] = str("xxxxxxxxxxxxxxxxxxxxxxxx")#######from langchain.llms import OpenAIllm = OpenAI(temperature=1, max_tokens=512, model="text-davinci-003")#######sudoku_puzzle =   "3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1"sudoku_solution = "3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1"problem_description = f"""{sudoku_puzzle}- This is a 4x4 Sudoku puzzle.- The * represents a cell to be filled.- The | character separates rows.- At each step, replace one or more * with digits 1-4.- There must be no duplicate digits in any row, column or 2x2 subgrid.- Keep the known digits from previous valid thoughts in place.- Each thought can be a partial or the final solution.""".strip()print(problem_description)######## The following code implement a simple rule based checker for # a specific 4x4 sudoku puzzle.#######from typing import Tuplefrom langchain_experimental.tot.checker import ToTCheckerfrom langchain_experimental.tot.thought import ThoughtValidityimport reclass MyChecker(ToTChecker):    def evaluate(self, problem_description: str, thoughts: Tuple[str, ...] = ()) -> ThoughtValidity:        last_thought = thoughts[-1]        clean_solution = last_thought.replace(" ", "").replace('"', "")        regex_solution = clean_solution.replace("*", ".").replace("|", "\\|")        if sudoku_solution in clean_solution:            return ThoughtValidity.VALID_FINAL        elif re.search(regex_solution, sudoku_solution):            return ThoughtValidity.VALID_INTERMEDIATE        else:            return ThoughtValidity.INVALID######## Testing the MyChecker class above:#######checker = MyChecker()assert checker.evaluate("", ("3,*,*,2|1,*,3,*|*,1,*,3|4,*,*,1",)) == ThoughtValidity.VALID_INTERMEDIATEassert checker.evaluate("", ("3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1",)) == ThoughtValidity.VALID_FINALassert checker.evaluate("", ("3,4,1,2|1,2,3,4|2,1,4,3|4,3,*,1",)) == ThoughtValidity.VALID_INTERMEDIATEassert checker.evaluate("", ("3,4,1,2|1,2,3,4|2,1,4,3|4,*,3,1",)) == ThoughtValidity.INVALID######## Initialize and run the ToT chain, # with maximum number of interactions k set to 30 and # the maximum number child thoughts c set to 8.#######from langchain_experimental.tot.base import ToTChaintot_chain = ToTChain(llm=llm, checker=MyChecker(), k=30, c=5, verbose=True, verbose_llm=False)tot_chain.run(problem_description=problem_description)#######

         代理的输出、迭代和回溯可以在输出中看到:

> Entering new ToTChain chain...Starting the ToT solve procedure./usr/local/lib/python3.10/dist-packages/langchain/chains/llm.py:278: UserWarning: The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain.  warnings.warn(Thought: 3,4,*,2|1,*,3,*|*,1,*,3|4,*,*,1    Thought: 3,4,1,2|1,*,3,*|*,1,*,3|4,*,*,1        Thought: 3,4,1,2|1,2,3,*|*,1,*,3|4,*,*,1            Thought: 3,4,1,2|1,2,3,4|*,1,*,3|4,*,*,1                Thought: 3,4,1,2|1,2,3,*|1,1,*,3|4,*,*,1                Thought: 3,4,1,2|1,2,3,*|*,2,*,3|4,*,*,1                Thought: 3,4,1,2|1,2,3,*|*,1,1,3|4,*,*,1                Thought: 3,4,1,2|1,2,3,*|*,1,*,4|4,*,*,1                Thought: 3,4,1,2|1,2,3,*|*,1,*,1|4,4,*,1            Thought: 3,4,1,2|1,2,3,*|1,1,*,3|4,*,*,1            Thought: 3,4,1,2|1,2,3,*|*,1,2,3|4,*,*,1            Thought: 3,4,1,2|1,2,3,*|*,1,*,3|4,1,*,1            Thought: 3,4,1,2|1,2,3,*|*,1,*,3|4,*,1,1        Thought: 3,4,1,2|1,*,3,4|*,1,*,3|4,*,*,1            Thought: 3,4,1,2|1,2,3,4|*,1,*,3|4,*,*,1                Thought: 3,4,1,2|1,2,3,4|2,1,*,3|4,*,*,1                    Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,*,*,1                        Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,1,*,*                        Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,2,*,*                        Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,3,*,*                            Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,3,1,*                            Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,*                                Thought: 3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1> Finished chain.3,4,1,2|1,2,3,4|2,1,4,3|4,3,2,1

        在Colab笔记本中查看的输出如下所示:

参考文献:

[1] https://cobusgreyling.medium.com/langsmith-1dd01049c3fb

[2] https://arxiv.org/pdf/2305.08291.pdf

[3] https://cobusgreyling.medium.com/langchain-langsmith-llm-guided-tree-of-thought-47a2cd5bcfca

这篇关于LLM之LangChain(七)| 使用LangChain,LangSmith实现Prompt工程ToT的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699509

相关文章

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

MySQL8.0设置redo缓存大小的实现

《MySQL8.0设置redo缓存大小的实现》本文主要在MySQL8.0.30及之后版本中使用innodb_redo_log_capacity参数在线更改redo缓存文件大小,下面就来介绍一下,具有一... mysql 8.0.30及之后版本可以使用innodb_redo_log_capacity参数来更改

Qt 中集成mqtt协议的使用方法

《Qt中集成mqtt协议的使用方法》文章介绍了如何在工程中引入qmqtt库,并通过声明一个单例类来暴露订阅到的主题数据,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一,引入qmqtt 库二,使用一,引入qmqtt 库我是将整个头文件/源文件都添加到了工程中进行编译,这样 跨平台

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个