利用pytorch实现迁移学习之猫狗分类器(dog vs cat)

2024-02-11 07:08

本文主要是介绍利用pytorch实现迁移学习之猫狗分类器(dog vs cat),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

迁移学习

迁移学习(Transfer learning) 就是把已学训练好的模型参数迁移到新的模型来帮助新模型训练。考虑到大部分数据或任务是存在相关性的,所以通过迁移学习我们可以将已经学到的模型参数(也可理解为模型学到的知识)通过某种方式来分享给新模型从而加快并优化模型的学习效率不用像大多数网络那样从零学习。
本文使用VGG16模型用于迁移学习,最终得到一个能对猫狗图片进行辨识的CNN(卷积神经网络),测试集用来验证模型是否能够很好的工作。

猫狗分类器

本文使用迁移学习实现猫狗分类器。
数据集来自Kaggle比赛:Dogs vs. Cats Redux: Kernels Edition

利用pytorch实现迁移学习

首先进行图片的导入和预览

path = "dog_vs_cat"
transform = transforms.Compose([transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])])data_image = {x:datasets.ImageFolder(root = os.path.join(path,x),transform = transform)for x in ["train", "val"]}data_loader_image = {x:torch.utils.data.DataLoader(dataset=data_image[x],batch_size = 4,shuffle = True)for x in ["train", "val"]}

输入的图片需要分辨率为224*224,所以使用transform.CenterCrop(224)对原始图片进行裁剪。载入的图片训练集合为20000个和验证集合为5000个,原始图片全部为训练集合,需自己拆分出一部分验证集合,输出的Label,1代表为狗,0代表猫。

X_train,y_train = next(iter(data_loader_image["train"]))
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
img = torchvision.utils.make_grid(X_train)
img = img.numpy().transpose((1,2,0))
img = img*std + meanprint([classes[i] for i in y_train])
plt.imshow(img)

图片预览
训练集的图片都为2242243。
迁移模型,打印出原始VGG模型结构为:

VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace)(4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace)(9): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace)(16): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace)(23): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace)(30): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace)(2): Dropout(p=0.5)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace)(5): Dropout(p=0.5)(6): Linear(in_features=4096, out_features=1000, bias=True))
)

迁移过来的VGG16模型需适应新的需求,达到对猫狗图片很好的识别,因此改写VGG16的全连接层的最后一部分并且重新训练参数。
即使只是训练整个全连接层的全部参数,普通的电脑也会花费大量的时间,所以这里只训练全连接层的最后一层,就能达到很好的效果。

model.classifier = torch.nn.Sequential(torch.nn.Linear(25088, 4096),torch.nn.ReLU(),torch.nn.Dropout(p=0.5),torch.nn.Linear(4096, 4096),torch.nn.ReLU(),torch.nn.Dropout(p=0.5),torch.nn.Linear(4096, 2))for parma in model.parameters():parma.requires_grad = Falsefor index, parma in enumerate(model.classifier.parameters()):if index == 6:parma.requires_grad = Trueif use_gpu:model = model.cuda()cost = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.classifier.parameters())

parma.requires_grid = False是冻结参数,即使发生新的训练也不会进行参数的更新。
这里还对全连接层的最后一层进行了改写,torch.nn.Linear(4096, 2)使得最后输出的结果只有两个,即只需要对猫狗进行分辨。
optimizer = torch.optim.Adam(model.classifier.parameters())只对全连接层参数进行更新优化,loss计算依然使用交叉熵。
对改写后的模型进行查看:

VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace)(4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace)(9): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace)(16): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace)(23): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace)(30): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU()(2): Dropout(p=0.5)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU()(5): Dropout(p=0.5)(6): Linear(in_features=4096, out_features=2, bias=True))
)

这里我使用纯cpu进行训练,因为速度贼慢,我只进行了对100张图片进行训练的demo,进行1次训练的结果为:

Epoch0/1
----------
Batch 5, Train Loss:1.2027, Train ACC:90.0000
Batch 10, Train Loss:0.6853, Train ACC:92.0000
Batch 15, Train Loss:0.7109, Train ACC:91.0000
Batch 20, Train Loss:0.5332, Train ACC:93.0000
Batch 25, Train Loss:0.5215, Train ACC:94.0000
Batch 30, Train Loss:0.4346, Train ACC:95.0000
Batch 35, Train Loss:0.4213, Train ACC:95.0000
Batch 40, Train Loss:0.3748, Train ACC:95.0000
Batch 45, Train Loss:0.3541, Train ACC:95.0000
Batch 50, Train Loss:0.3501, Train ACC:94.0000
train Loss:0.3501, Correct:94.0000
val Loss:0.9151, Correct:88.0000
Training time is:6m 4s

看到训练的Loss为0.3501, Accuraty准确率为94%。验证集的Loss为0.9151,Accuraty准确率为88%。这只是100张图片的一次训练,更加多的图片以及多次的训练可能会得到一个更加好的结果。

随机输入测试集合产看预测结果:
预测结果
可以看到预测结果没有出现错误,本文输入时采用了随机裁剪,如果对原始图片进行缩放可能会提升模型的预测准确率,此外还可以增加数据个数、训练次数、数据增强处理。
完整代码链接:xiutangseeker/dog_vs_cat

这篇关于利用pytorch实现迁移学习之猫狗分类器(dog vs cat)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699155

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u