利用pytorch实现迁移学习之猫狗分类器(dog vs cat)

2024-02-11 07:08

本文主要是介绍利用pytorch实现迁移学习之猫狗分类器(dog vs cat),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

迁移学习

迁移学习(Transfer learning) 就是把已学训练好的模型参数迁移到新的模型来帮助新模型训练。考虑到大部分数据或任务是存在相关性的,所以通过迁移学习我们可以将已经学到的模型参数(也可理解为模型学到的知识)通过某种方式来分享给新模型从而加快并优化模型的学习效率不用像大多数网络那样从零学习。
本文使用VGG16模型用于迁移学习,最终得到一个能对猫狗图片进行辨识的CNN(卷积神经网络),测试集用来验证模型是否能够很好的工作。

猫狗分类器

本文使用迁移学习实现猫狗分类器。
数据集来自Kaggle比赛:Dogs vs. Cats Redux: Kernels Edition

利用pytorch实现迁移学习

首先进行图片的导入和预览

path = "dog_vs_cat"
transform = transforms.Compose([transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])])data_image = {x:datasets.ImageFolder(root = os.path.join(path,x),transform = transform)for x in ["train", "val"]}data_loader_image = {x:torch.utils.data.DataLoader(dataset=data_image[x],batch_size = 4,shuffle = True)for x in ["train", "val"]}

输入的图片需要分辨率为224*224,所以使用transform.CenterCrop(224)对原始图片进行裁剪。载入的图片训练集合为20000个和验证集合为5000个,原始图片全部为训练集合,需自己拆分出一部分验证集合,输出的Label,1代表为狗,0代表猫。

X_train,y_train = next(iter(data_loader_image["train"]))
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
img = torchvision.utils.make_grid(X_train)
img = img.numpy().transpose((1,2,0))
img = img*std + meanprint([classes[i] for i in y_train])
plt.imshow(img)

图片预览
训练集的图片都为2242243。
迁移模型,打印出原始VGG模型结构为:

VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace)(4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace)(9): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace)(16): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace)(23): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace)(30): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace)(2): Dropout(p=0.5)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace)(5): Dropout(p=0.5)(6): Linear(in_features=4096, out_features=1000, bias=True))
)

迁移过来的VGG16模型需适应新的需求,达到对猫狗图片很好的识别,因此改写VGG16的全连接层的最后一部分并且重新训练参数。
即使只是训练整个全连接层的全部参数,普通的电脑也会花费大量的时间,所以这里只训练全连接层的最后一层,就能达到很好的效果。

model.classifier = torch.nn.Sequential(torch.nn.Linear(25088, 4096),torch.nn.ReLU(),torch.nn.Dropout(p=0.5),torch.nn.Linear(4096, 4096),torch.nn.ReLU(),torch.nn.Dropout(p=0.5),torch.nn.Linear(4096, 2))for parma in model.parameters():parma.requires_grad = Falsefor index, parma in enumerate(model.classifier.parameters()):if index == 6:parma.requires_grad = Trueif use_gpu:model = model.cuda()cost = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.classifier.parameters())

parma.requires_grid = False是冻结参数,即使发生新的训练也不会进行参数的更新。
这里还对全连接层的最后一层进行了改写,torch.nn.Linear(4096, 2)使得最后输出的结果只有两个,即只需要对猫狗进行分辨。
optimizer = torch.optim.Adam(model.classifier.parameters())只对全连接层参数进行更新优化,loss计算依然使用交叉熵。
对改写后的模型进行查看:

VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace)(4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace)(9): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace)(16): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace)(23): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace)(30): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU()(2): Dropout(p=0.5)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU()(5): Dropout(p=0.5)(6): Linear(in_features=4096, out_features=2, bias=True))
)

这里我使用纯cpu进行训练,因为速度贼慢,我只进行了对100张图片进行训练的demo,进行1次训练的结果为:

Epoch0/1
----------
Batch 5, Train Loss:1.2027, Train ACC:90.0000
Batch 10, Train Loss:0.6853, Train ACC:92.0000
Batch 15, Train Loss:0.7109, Train ACC:91.0000
Batch 20, Train Loss:0.5332, Train ACC:93.0000
Batch 25, Train Loss:0.5215, Train ACC:94.0000
Batch 30, Train Loss:0.4346, Train ACC:95.0000
Batch 35, Train Loss:0.4213, Train ACC:95.0000
Batch 40, Train Loss:0.3748, Train ACC:95.0000
Batch 45, Train Loss:0.3541, Train ACC:95.0000
Batch 50, Train Loss:0.3501, Train ACC:94.0000
train Loss:0.3501, Correct:94.0000
val Loss:0.9151, Correct:88.0000
Training time is:6m 4s

看到训练的Loss为0.3501, Accuraty准确率为94%。验证集的Loss为0.9151,Accuraty准确率为88%。这只是100张图片的一次训练,更加多的图片以及多次的训练可能会得到一个更加好的结果。

随机输入测试集合产看预测结果:
预测结果
可以看到预测结果没有出现错误,本文输入时采用了随机裁剪,如果对原始图片进行缩放可能会提升模型的预测准确率,此外还可以增加数据个数、训练次数、数据增强处理。
完整代码链接:xiutangseeker/dog_vs_cat

这篇关于利用pytorch实现迁移学习之猫狗分类器(dog vs cat)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699155

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount