利用Spark MLlib实现协同过滤(ALS)算法实例(Python)

2024-02-11 07:08

本文主要是介绍利用Spark MLlib实现协同过滤(ALS)算法实例(Python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

协作过滤

协同过滤通常用于推荐系统。这些技术旨在填补用户项目关联矩阵的缺失条目。 spark.ml目前支持基于模型的协作过滤,其中用户和产品由一组可用于预测缺失条目的潜在因素来描述。 spark.ml使用交替最小二乘(ALS) 算法来学习这些潜在因素。实现中spark.ml有以下参数:

numBlocks是为了并行化计算而将用户和项目划分到的块的数量(默认为10)。
rank是模型中潜在因素的数量(默认为10)。
maxIter是要运行的最大迭代次数(默认为10)。
regParam指定ALS中的正则化参数(默认为1.0)。
implicitPrefs指定是使用显式反馈 ALS变体还是使用 隐式反馈数据(默认为false使用显式反馈的手段)。
alpha是一个适用于ALS的隐式反馈变量的参数,该变量管理偏好观察值的 基线置信度(默认值为1.0)。
nonnegative指定是否对最小二乘使用非负约束(默认为false)。
注意: ALS的基于DataFrame的API目前仅支持用户和项目ID的整数。用户和项目ID列支持其他数字类型,但ID必须在整数值范围内。

显式与隐式反馈

基于矩阵分解的协同过滤的标准方法将用户项矩阵中的条目视为由用户给予该项的明确偏好,例如,给予电影评级的用户。

在许多真实世界的用例中,通常只能访问隐式反馈(例如查看,点击,购买,喜欢,共享等)。用于spark.ml处理这些数据的方法取自隐式反馈数据集的协作过滤。本质上,这种方法不是直接对收视率矩阵进行建模,而是将数据视为代表实力的数字观察用户操作(例如点击次数或某人观看电影的累计持续时间)。然后,这些数字与观察到的用户偏好的信心水平相关,而不是给予项目的明确评分。该模型然后试图找出可用于预测用户对物品的预期偏好的潜在因素。

from __future__ import print_functionimport sys
if sys.version >= '3':long = intfrom pyspark.sql import SparkSession# $example on$
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml.recommendation import ALS
from pyspark.sql import Row
from pyspark import SparkContext, SparkConf# $example off$
if __name__ == "__main__":spark = SparkSession\.builder\.appName("ALSExample")\.getOrCreate()inputFile = "hdfs://node1:8020/mv_training/training_set_stamp_little.txt"    outputFile = "hdfs://node1:8020/data/test"    #lines = SparkContext(inputFile)  #$example on$#lines = spark.read.text("data/mllib/als/sample_movielens_ratings.txt").rddlines = spark.read.text(inputFile).rddparts = lines.map(lambda row: row.value.split(","))ratingsRDD = parts.map(lambda p: Row(userId=int(p[0]), movieId=int(p[1]),rating=float(p[2]), timestamp=long(p[3])))ratings = spark.createDataFrame(ratingsRDD)(training, test) = ratings.randomSplit([0.8, 0.2])# Build the recommendation model using ALS on the training data# Note we set cold start strategy to 'drop' to ensure we don't get NaN evaluation metricsals = ALS(maxIter=5, regParam=0.01, userCol="userId", itemCol="movieId", ratingCol="rating",coldStartStrategy="drop")model = als.fit(training)# Evaluate the model by computing the RMSE on the test datapredictions = model.transform(test)evaluator = RegressionEvaluator(metricName="rmse", labelCol="rating",predictionCol="prediction")rmse = evaluator.evaluate(predictions)print("Root-mean-square error = " + str(rmse))# Generate top 10 movie recommendations for each useruserRecs = model.recommendForAllUsers(2)# Generate top 10 user recommendations for each moviemovieRecs = model.recommendForAllItems(2)# $example off$# print (userRecs)# print (movieRecs)#userRecs.write.format("text").save("hdfs://node1/output/result_little.txt")    userRecs.write.format("json").save("file:///root/output/result_little.json") #userRecs.saveAsTextFile("file:///root/output/result_little")userRecs.show()movieRecs.show()

完整的示例代码:Spark repo中 “examples/src/main/python/ml/als_example.py”
如果评级矩阵是从另一个信息源(即它是从其他信号推断)得出,可以设置implicitPrefs为True获得更好的效果:

als = ALS(maxIter=5, regParam=0.01, implicitPrefs=True,userCol="userId", itemCol="movieId", ratingCol="rating")

官网链接:Collaborative Filtering
得到的结果为DataFrame类型,结果输出到文件即使用DataFrame提供的接口,下例输出为json文件,txt文件即为format(“text”),csv文件即为format(“csv”),:

userRecs.write.format("json").save("file:///root/output/result_little.json") 

这篇关于利用Spark MLlib实现协同过滤(ALS)算法实例(Python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699153

相关文章

Java StringBuilder 实现原理全攻略

《JavaStringBuilder实现原理全攻略》StringBuilder是Java提供的可变字符序列类,位于java.lang包中,专门用于高效处理字符串的拼接和修改操作,本文给大家介绍Ja... 目录一、StringBuilder 基本概述核心特性二、StringBuilder 核心实现2.1 内部

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

SpringBoot AspectJ切面配合自定义注解实现权限校验的示例详解

《SpringBootAspectJ切面配合自定义注解实现权限校验的示例详解》本文章介绍了如何通过创建自定义的权限校验注解,配合AspectJ切面拦截注解实现权限校验,本文结合实例代码给大家介绍的非... 目录1. 创建权限校验注解2. 创建ASPectJ切面拦截注解校验权限3. 用法示例A. 参考文章本文

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4