Educational Codeforces Round 50 (Rated for Div. 2) B. Diagonal Walking v.2(思维)

2024-02-11 02:58

本文主要是介绍Educational Codeforces Round 50 (Rated for Div. 2) B. Diagonal Walking v.2(思维),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:http://codeforces.com/contest/1036/problem/B

题意:给你一个q代表q次询问,然后给出三个数n,m, k。(n,m)代表终点,k代表最多移动的步数。让你求出到达终点的过程中,走对角线的最大步数。

思路:当m > k时输出-1(设m是较大的数),当m-n是奇数时有一步不能走对角线所以k--,当走对角线可以直接到达终点,如果剩余的步数是奇数则有两步不能走对角线所以k - 2。(画图观察规律)

#include <bits/stdc++.h>
#define ll long long
using namespace std;
int q;
ll n,m,k;
int main()
{scanf("%d",&q);while(q--){scanf("%lld%lld%lld",&n,&m,&k);if(n > m) swap(n,m);if(m > k) { puts("-1"); continue;}if((m - n) & 1) k--;else if((k - m) & 1) k -= 2;printf("%lld\n",k);}return 0;
}

 

这篇关于Educational Codeforces Round 50 (Rated for Div. 2) B. Diagonal Walking v.2(思维)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698649

相关文章

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

Codeforces Round #261 (Div. 2)小记

A  XX注意最后输出满足条件,我也不知道为什么写的这么长。 #define X first#define Y secondvector<pair<int , int> > a ;int can(pair<int , int> c){return -1000 <= c.X && c.X <= 1000&& -1000 <= c.Y && c.Y <= 1000 ;}int m

Codeforces Beta Round #47 C凸包 (最终写法)

题意慢慢看。 typedef long long LL ;int cmp(double x){if(fabs(x) < 1e-8) return 0 ;return x > 0 ? 1 : -1 ;}struct point{double x , y ;point(){}point(double _x , double _y):x(_x) , y(_y){}point op

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

Codeforces 482B 线段树

求是否存在这样的n个数; m次操作,每次操作就是三个数 l ,r,val          a[l] & a[l+1] &......&a[r] = val 就是区间l---r上的与的值为val 。 也就是意味着区间[L , R] 每个数要执行 | val 操作  最后判断  a[l] & a[l+1] &......&a[r] 是否= val import ja

CSS实现DIV三角形

本文内容收集来自网络 #triangle-up {width: 0;height: 0;border-left: 50px solid transparent;border-right: 50px solid transparent;border-bottom: 100px solid red;} #triangle-down {width: 0;height: 0;bor

【附答案】C/C++ 最常见50道面试题

文章目录 面试题 1:深入探讨变量的声明与定义的区别面试题 2:编写比较“零值”的`if`语句面试题 3:深入理解`sizeof`与`strlen`的差异面试题 4:解析C与C++中`static`关键字的不同用途面试题 5:比较C语言的`malloc`与C++的`new`面试题 6:实现一个“标准”的`MIN`宏面试题 7:指针是否可以是`volatile`面试题 8:探讨`a`和`&a`

day-50 求出最长好子序列 I

思路 二维dp,dp[i][h]表示nums[i] 结尾,且有不超过 h 个下标满足条件的最长好子序列的长度(0<=h<=k),二维数组dp初始值全为1 解题过程 状态转换方程: 1.nums[i]==nums[j],dp[i,h]=Math.max(dp[i,h],dp[j,h]+1) 2.nums[i]!=nums[j],dp[i,h]=Math.max(dp[i,h],dp[j,h-1

颠覆你的开发模式:敏捷思维带来的无限可能

敏捷软件开发作为现代软件工程的重要方法论,强调快速响应变化和持续交付价值。通过灵活的开发模式和高效的团队协作,敏捷方法在应对动态变化和不确定性方面表现出色。本文将结合学习和分析,探讨系统变化对敏捷开发的影响、业务与技术的对齐以及敏捷方法如何在产品开发过程中处理持续变化和迭代。 系统变化对敏捷软件开发的影响 在敏捷软件开发中,系统变化的管理至关重要。系统变化可以是需求的改变、技术的升级、

创建一个大的DIV,里面的包含两个DIV是可以自由移动

创建一个大的DIV,里面的包含两个DIV是可以自由移动 <body>         <div style="position: relative; background:#DDF8CF;line-height: 50px"> <div style="text-align: center; width: 100%;padding-top: 0px;"><h3>定&nbsp;位&nbsp;