机器学习2--逻辑回归(案列)

2024-02-11 02:04

本文主要是介绍机器学习2--逻辑回归(案列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

糖尿病数据线性回归预测

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_diabetes
diabetes=load_diabetes()
data=diabetes['data']
target=diabetes['target']
feature_names=diabetes['feature_names']
data.shape
df = pd.DataFrame(data, columns=feature_names)
df.head()
# 抽取训练数据和预测数据
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(data,target,test_size=0.2)
x_train.shape,x_test.shape
# 创建模型
from sklearn.linear_model import LinearRegression
linear=LinearRegression()
linear.fit(x_train,y_train)
# 预测
y_pred=linear.predict(x_test)
y_pred
# 得分: 回归的得分很低
#linear.score(x_test,y_test)
### 线性回归评估指标
#- mean_squared_error 均方误差
from sklearn.metrics import mean_squared_error as mse
# 均方误差
mse(y_test,y_pred)
#### 求线性方程: y = WX + b 中的W系数和截距b
# w系数
linear.coef_
# 10个特征 就有10个系数
# b截距
linear.intercept_
#### 研究每个特征和标记结果之间的关系.来分析哪些特征对结果影响较大
plt.figure(figsize=(5*4, 2*4))for i, col in enumerate(df.columns):# 每一列数据data2 = df[col].copy()# 画子图ax = plt.subplot(2, 5, i+1)ax.scatter(data2, target)# 线性回归:对每一个特征进行回归分析linear2 = LinearRegression()linear2.fit(df[[col]], target)# 每个特征的系数w和截距b# y = wx + bw = linear2.coef_[0]b = linear2.intercept_# print(w, b)# 画直线x = np.linspace(data2.min(), data2.max(), 2)y = w * x + bax.plot(x, y, c='r')# 特征score = linear2.score(df[[col]], target)  # 模型得分ax.set_title(f'{col}: {round(score, 3)}', fontsize=16)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
### 抛物线函数
# 抛物线函数
# f(x) = (x - 2)²  + 5# Python函数
f=lambda x:(x-2)**2+5
# 画图
x=np.linspace(-2,6,100)
y=f(x)
plt.plot(x,y)
#### 使用梯度下降算法 求 当x为多少时,函数f(x)的值最小
# ①对目标函数求导; 
# ②循环对参数更新;
# ①对目标函数求导; # 抛物线函数
# f(x) = (x - 2)²  + 5# 求导数
#  dx = 2x - 4
d = lambda x: 2 * x - 4
# ②循环对参数更新;
θ = 6
# 学习率 lr  : learning_rate 
lr=0.03
# 最大迭代次数
max_iter=100
θ_list = [θ]
# 循环
for i in range(max_iter):θ = θ - lr * d(θ)θ_list.append(θ)
θ_array = np.array(θ_list)
# 画图
x=np.linspace(-2,6,100)
y=f(x)
plt.figure(figsize=(4,5))
plt.plot(x,y)
plt.plot(θ_array,f(θ_array), marker='*')

Logistic Regression虽然名字里带“回归”,但是它实际上是一种分类方法,用于两分类问题(即输出只有两种)。首先需要先找到一个预测函数(h),显然,该函数的输出必须是两类值(分别代表两个类别),所以利用了*Logistic函数(或称为Sigmoid函数)*

#1实战手写数字识别
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 逻辑回归: 分类
from sklearn.linear_model import LogisticRegression
# 使用KNN与Logistic回归两种方法
from sklearn.datasets import load_digits
digits=load_digits()
digits
data=digits['data']
target=digits['target']
feature_names=digits['feature_names']
target_names=digits['target_names']
imges=digits['images']
data.shape
imges.shape
pd.Series(target).unique()
feature_names
#划分数据集
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(data, target, test_size=0.2)
#使用逻辑回归
#创建模型,训练和预测
# C=1.0 :  越大表示越严格,对训练数据拟合更好,可能导致过拟合
#          越小表示不严格,对训练数据拟合不好,可能导致欠拟合
#
# solver : 逻辑回归的损失函数的一种进行优化的算法
#      {'lbfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'sag', 'saga'},
#    solver='lbfgs' 默认值
#    liblinear:一般适用于小数据集
#    sag,saga: 一般使用于大数据集,速度更快
#    其他是中等数据集
# 
#  max_iter=100: 最大迭代次数
#  
#  n_jobs=-1  表示使用的CPU核数,多进程处理,一般设置为CPU核数,-1表示时使用所有处理器
lr=LogisticRegression(C=1.0,solver='lbfgs',max_iter=100,n_jobs=-1)
#训练
%timeit lr.fit(x_train,y_train)
# 预测
%timeit lr.predict(x_test)
# 得分
lr.score(x_train,y_train)
lr.score(x_test,y_test)
# 导包使用datasets.make_blobs创建一系列点
#from sklearn.datasets import make_blobs
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_blobs
# n_samples=100,  样本数,行数
# n_features=2,   特征数,列数
# centers=None,  几堆点,默认是3
# cluster_std=1.0,  离散程度
data,target=make_blobs(n_samples=300,centers=4,cluster_std=1.0)
plt.scatter(data[:,0],data[:,1],c=target)
#设置三个中心点,随机创建100个点
#创建机器学习模型(逻辑斯蒂回归),训练数据
lr=LogisticRegression(max_iter=10000)  
lr.fit(data,target)
lr.score(data,target)
#分类后,并绘制边界图
x=np.array([1,2,3,4])
y=np.array([5,6,7,8,9])
X, Y = np.meshgrid(x, y)
# 让X,Y相交
XY=np.c_[X.reshape(-1),Y.reshape(-1)]
#  分别对x轴和y轴的数据等分成1000份
#  分别对x轴和y轴的数据等分成1000份
x = np.linspace(data[:, 0].min(), data[:, 0].max(), 1000)
y = np.linspace(data[:, 1].min(), data[:, 1].max(), 1000)X, Y = np.meshgrid(x, y)# ravel(): 扁平化
XY = np.c_[X.ravel(), Y.ravel()]
XY.shape
# 提供测试数据: XY
y_pred=lr.predict(XY)
y_pred.shape
# 画边界图
plt.pcolormesh(X,Y,y_pred.reshape(1000,1000))
plt.scatter(data[:,0],data[:,1],c=target,cmap='rainbow')

 

这篇关于机器学习2--逻辑回归(案列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698564

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件