python分析数据走势_Python数据可视化:2018年北上广深空气质量分析

本文主要是介绍python分析数据走势_Python数据可视化:2018年北上广深空气质量分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有态度地学习

就在这周偶然看到一个学弟吐槽天津的空气,不禁想起那段厚德载雾,自强不吸的日子。

无图无真相,下图为证。

163f50257909d66d122321df45e8832c.png

左边的图是去年2月份的时候,这样的空气真的难得一见!

右边的是吐槽以及我个人第一次买口罩!!!

口罩用的还行,因为那个时候做课设,经常要两个校区跑,基本上空气不好我就会带上。

题目好像是有关液压及气压的传动系统,手画A0图...

这应该是快两年前的事了,时光飞逝呐。

所以这回先对2017年天津的空气质量情况进行分析,然后再是北上广深。

/ 01 / 网页分析

84ab3c35d5bc6ee10f564e59ec9b9b37.png

网站没有反爬,所以直接抓取信息就好了。

看见没有,妥妥的严重污染,2016年12月份买的口罩派上用场啦!

这里简单给大家科普一下有关AQI,PM2.5的知识。

b3477c2a06a2ca1794dcc5eeff0e7115.png

944126ac3aebee8a79869246ab2a9511.png

又是重操旧业,我的PPT水平还是很水呢~

/ 02 / 数据获取

获取代码如下所示。

import time

import requests

from bs4 import BeautifulSoup

headers = {

'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36'

}

for i in range(1, 13):

time.sleep(5)

# 把1转换为01

url = 'http://www.tianqihoubao.com/aqi/tianjin-2017' + str("%02d" % i) + '.html'

response = requests.get(url=url, headers=headers)

soup = BeautifulSoup(response.text, 'html.parser')

tr = soup.find_all('tr')

# 去除标签栏

for j in tr[1:]:

td = j.find_all('td')

Date = td[0].get_text().strip()

Quality_grade = td[1].get_text().strip()

AQI = td[2].get_text().strip()

AQI_rank = td[3].get_text().strip()

PM = td[4].get_text()

with open('air_tianjin_2017.csv', 'a+', encoding='utf-8-sig') as f:

f.write(Date + ',' + Quality_grade + ',' + AQI + ',' + AQI_rank + ',' + PM + '\n')

成功获取数据。

ced7d875320963dc5978d3e4e97d9530.png

/ 03 / 天津

同样不上源码,这里有必要说一波,因为我觉得源码放上去排版就不好看了...

其次我要秉承以前混迹P圈(PPT)得到的优良传统,热爱分享,百度云盘你值得拥有。

所以公众号回复天气。即可获取全部可视化源码及相关文件。

以前天天去下载PPT大神的大作,然后观摩,可惜的是PPT水平还是那么菜~

01  AQI全年走势图

00fa3bd3aa205c4ca5a7c6399cc60a3e.png

92.5是年均AQI值,从上面科普知识里可以知道,2017年天津整体空气质量只能是「良」中的下下等水平,与轻度污染近在咫尺。

02  AQI月均走势图

c40cc147570f9d2d8f22ce0998e6cd37.png

从月均的走势图就能看出,1月的空气质量最差,8月的空气质量最好,当也并不是有多好,充其量也就是个「良」!

03  AQI季度箱形图

74dacb81aa0d812871c9bfd860d3590b.png

箱形图,显示一组数据分散情况资料的统计图。

数据里有最大值、最小值、中位数和两个四分位数。

这里可以看出,2017年天津的季度AQI均值差距不是很大。

但是一、二、四季度有明显的波动,空气质量有时会变得很差。

04  PM2.5全年走势图

0153633a78ece6361d7c930551468cb8.png

59.87是年均PM2.5值,已经远超过国家二级标准限值35了。

其实天津给我留下的印象就是天气经常灰蒙蒙,时常还会变点颜色,比如黄色~

一年下不了几次雨,及其干燥。所以那个最低值11,我猜那时候估计是刮大风。

05  PM2.5月均走势图

34b00f55238b8f135591c4894f319296.png

和AQI的走势差不多,同样是1月最高,8月最低。

06  PM2.5季度箱形图

d1b39fd32fe93cd87533ec43dfab1ae6.png

说实话,看了这个图,我不知道天津的「大哥」及「姐姐」们是如何做到自强不吸的。

基本上四个季度都超标了,一年不超标的估计也就那么几次。

07  PM2.5指数日历图

3dfb92a39da9a07c475c4e7be37b9cc4.png

f852213ff98fe70388b1b45fbe86efe0.png

8a20106ca46c9c0e58423d3157984e0c.png

日均PM2.5国家二级标准为75,从上面的热力图看,基本上轻度污染过半了。

另外一月还是重灾区,天色黄黄的...

其实每逢雾霾,基本上就是待宿舍了。而且1月份是考试月,刚好窝宿舍预习课本~

08  天津全年空气质量情况

2e8b999257217daf2ce75f136a634e46.png

「良」和「轻度污染」占了大头,「优」只能在角落里瑟瑟发抖,足以说明空气之差。

不过该上课还是要上课,谁叫那时宿舍和教室离得近(走过去5分钟不到)。

/ 04 / 北上广深

01  北上广深AQI全年走势图

5d89c7111035b6efda60297a477cefe8.png

北京月均AQI最低也就50左右,看来今年全年差不多都在「优」以下了。

不过相比前几年,京津冀空气已经好了不少(政策),真的。

上海和广州差不多,深圳与北京算是鲜明对比。

02  北上广深PM2.5全年走势图

4fe4b80271887f0f6d5a7dd3c55a1424.png

北京一如既往的高调。

03  北上广深全年空气质量情况

36e95ea59c466aec29496b85ddea09f3.png

深圳几乎都是「优」和「良」,上海和广州和上面说的一样,北京的「优」已经不少了。

那么你所在的城市空气质量又是如何?

公众号回复天气。即可获取全部源码。

文末点个赞,比心!!!

···  END  ···

这篇关于python分析数据走势_Python数据可视化:2018年北上广深空气质量分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698422

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4