TensorFlow on Android(4): 输入数据预处理和Inference

2024-02-10 20:48

本文主要是介绍TensorFlow on Android(4): 输入数据预处理和Inference,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Graph,Op, Tensor

在开始输入数据之前,我们先简单讲一下TensorFlow中的一些概念

一个 TensorFlow 的计算任务, 叫做Graph, 一个Graph由很多节点(Op)组成, Op通过Tensor获取输入,Op完成计算以后再通过Tensor把输出传递到下一个节点。

Tensor一般来说是一个数组(1维或多维),我们用Feed操作将一个Tensor的数据输入到一个Op, 用Fetch操作将Op的输出提取到Tensor当中

那么回到我们的项目中来,为了进行物体的识别,我们要做就是相应的Op中输入图片数据, 然后从相应的Op提取识别结果

我们在这里可以找到我们使用的模型的大致架构
enter image description here
那么可以这样说, 我们向名为“image_tensor”的Op中输入图片数据, 然后从多个Op中获取识别结果,这样的Op有4个

  • “detection_boxes”, 输出识别物体的矩形框
  • “detection_scores”, 输出识别物体的Confidence, 用来衡量识别得准确性有多大
  • “detection_classes”, 识别物体的种类
  • “num_detections”, 识别物体的数量

明白了我们该怎么做以后, 我们开始写代码吧!

设计界面

首先我们需要设计一个界面, 有一个Button用来呼出相册, 以及一个ImageView来显示图片和识别结果, 大致是这样的
enter image description here

然后我们需要写一些代码来实现从相册从提取图片,并显示在ImageView上面
因为这些代码都很简单,而且很多现成代码可以参考,这里就不再详述了。

数据预处理

在将图片数据Feed到我们的模型之前,我们还需要对图片数据进行一些处理,将它转换为我们模型能够识别和处理的数据。我们用Bitmap作为最原始的输入数据,我们需要做下面的一些处理:

第一步是图片尺寸, 每一个图片的长宽都是不一样的,但是我们希望把所有的输入图片都处理成一样的尺寸,比如说300X300,所以我们需要写一些图片尺寸转换的代码,这样的代码如果自己不会写,在网上也可以找到很多现成的代码,下面也是从开源的代码里面参考来的转换函数:

public class Utils {
public static Matrix getImageTransformationMatrix(final int srcWidth,final int srcHeight,final int dstWidth,final int dstHeight,final int applyRotation,final boolean maintainAspectRatio) {final Matrix matrix = new Matrix();if (applyRotation != 0) {matrix.postTranslate(-srcWidth / 2.0f, -srcHeight / 2.0f);matrix.postRotate(applyRotation);}final boolean transpose = (Math.abs(applyRotation) + 90) % 180 == 0;final int inWidth = transpose ? srcHeight : srcWidth;final int inHeight = transpose ? srcWidth : srcHeight;if (inWidth != dstWidth || inHeight != dstHeight) {final float scaleFactorX = dstWidth / (float) inWidth;final float scaleFactorY = dstHeight / (float) inHeight;if (maintainAspectRatio) {final float scaleFactor = Math.max(scaleFactorX, scaleFactorY);matrix.postScale(scaleFactor, scaleFactor);} else {matrix.postScale(scaleFactorX, scaleFactorY);}}if (applyRotation != 0) {matrix.postTranslate(dstWidth / 2.0f, dstHeight / 2.0f);}return matrix;}
}

这个函数会返回进行图片尺寸转换所需要的Matrix对象,这很有用,我们在后面可视化识别结果的时候用的着。然后我们通过下面的代码来完成转换

Bitmap bitmapInput = Bitmap.createBitmap(300, 300, Bitmap.Config.ARGB_8888);
final Matrix originToInput = Utils.getImageTransformationMatrix(originImage.getWidth(), originImage.getHeight(), 300, 300,0, false);
final Canvas canvas = new Canvas(bitmapInput);
canvas.drawBitmap(originImage, originToInput, null);

第二步是将二维的位图数据转换为一维的数组, 我们的模型接受的输入是由图片的像素点RGB值组成的一维数组, 比如说有2个像素点(用(R,G,B)表示),(1,2,3),(4,5,6),那么正确的输入数组应该是[1, 2, 3, 4, 5, 6], 我们可以通过下面的代码来完成

int[] pixels = new int[300 * 300];
bitmapInput.getPixels(pixels, 0, bitmapInput.getWidth(), 0, 0, bitmapInput.getWidth(), bitmapInput.getHeight());
byte[] byteInput = new byte[pixels.length * 3];
for (int i = 0; i < pixels.length; ++i) {byteInput[i * 3 + 2] = (byte) (pixels[i] & 0xFF);byteInput[i * 3 + 1] = (byte) ((pixels[i] >> 8) & 0xFF);byteInput[i * 3 + 0] = (byte) ((pixels[i] >> 16) & 0xFF);}

我们先通过getPixels获取位图所有像素的一维数组,再通过位操作分别提取每个像素的RGB值,然后赋值到byteInput数组的相应位置中, byteInput数组就是处理好的,准备Inference的数据了

Inference

我们通过调用TensorFlowInferenceInterface的Feed方法来向模型中输入数据

inferenceInterface.feed("image_tensor", byteInput, 1, 300, 300, 3);

这个代码的意思是向名为“image_tensor”的Op输入相应的数据: 图片数据,值为 byteInput; batch_size, 我们输入的是一张图片的数据,所以值为1; 图片的高和宽,都是300;通道数,因为我们使用RGB,所以值为3

接下来我们分配一些数组(Tensor)来准备接受Inference的结果,我们只取物体位置, 分数,物体类型的数据, 在这里我们最多取前100个识别结果:

float[] boxes = new float[100 * 4];
float[] scores = new float[100];
float[] classes = new float[100];

因为一个矩形框(box)是由(top,left, botton,right)的4元组表示的,所以boxes数组的大小应该是 100X4。分配好数组以后, 我们就可以开始inference, 并从相应的Op里面提取识别结果, 代码如下:

inferenceInterface.run(new String[]{"detection_boxes", "detection_scores","detection_classes"}, false);
float[] boxes = new float[MAX_RESULTS * 4];
float[] scores = new float[MAX_RESULTS];
float[] classes = new float[MAX_RESULTS];
inferenceInterface.fetch("detection_boxes", boxes);
inferenceInterface.fetch("detection_scores", scores);
inferenceInterface.fetch("detection_classes", classes);

我们使用TensorFlowInferenceInterface的Run方法来启动从之前用Feed注册的输入节点(image_tensor)到由参数指定的输出节点(detection_boxes, detection_scores,detection_classes)的Inference, 对我们来说,就是从输入的图片数据,识别出物体的位置,类别,和分数。然后我们用 Fetch方法来提取相应的输出数据。

现在我们已经得到了识别结果,接下来准备把结果可视化吧!

这篇关于TensorFlow on Android(4): 输入数据预处理和Inference的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698043

相关文章

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T