leetcode 3027. 人员站位的方案数 II【离散化前缀和+枚举】

2024-02-10 15:28

本文主要是介绍leetcode 3027. 人员站位的方案数 II【离散化前缀和+枚举】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题链接:3027. 人员站位的方案数 II

题目描述:

给你一个  n x 2 的二维数组 points ,它表示二维平面上的一些点坐标,其中 points[i] = [xi, yi] 。

我们定义 x 轴的正方向为  (x 轴递增的方向),x 轴的负方向为  (x 轴递减的方向)。类似的,我们定义 y 轴的正方向为  (y 轴递增的方向),y 轴的负方向为  (y 轴递减的方向)。

你需要安排这 n 个人的站位,这 n 个人中包括 liupengsay 和小羊肖恩 。你需要确保每个点处 恰好 有 一个 人。同时,liupengsay 想跟小羊肖恩单独玩耍,所以 liupengsay 会以 liupengsay 的坐标为 左上角 ,小羊肖恩的坐标为 右下角 建立一个矩形的围栏(注意,围栏可能  包含任何区域,也就是说围栏可能是一条线段)。如果围栏的 内部 或者 边缘 上有任何其他人,liupengsay 都会难过。

请你在确保 liupengsay 不会 难过的前提下,返回 liupengsay 和小羊肖恩可以选择的 点对 数目。

注意,liupengsay 建立的围栏必须确保 liupengsay 的位置是矩形的左上角,小羊肖恩的位置是矩形的右下角。比方说,以 (1, 1) ,(1, 3) ,(3, 1) 和 (3, 3) 为矩形的四个角,给定下图的两个输入,liupengsay 都不能建立围栏,原因如下:

  • 图一中,liupengsay 在 (3, 3) 且小羊肖恩在 (1, 1) ,liupengsay 的位置不是左上角且小羊肖恩的位置不是右下角。
  • 图二中,liupengsay 在 (1, 3) 且小羊肖恩在 (1, 1) ,小羊肖恩的位置不是在围栏的右下角。

输入输出描述:

示例 1:

输入:points = [[1,1],[2,2],[3,3]]
输出:0
解释:没有办法可以让 liupengsay 的围栏以 liupengsay 的位置为左上角且小羊肖恩的位置为右下角。所以我们返回 0 。

示例 2:

​编辑

输入:points = [[6,2],[4,4],[2,6]]
输出:2
解释:总共有 2 种方案安排 liupengsay 和小羊肖恩的位置,使得 liupengsay 不会难过:
- liupengsay 站在 (4, 4) ,小羊肖恩站在 (6, 2) 。
- liupengsay 站在 (2, 6) ,小羊肖恩站在 (4, 4) 。
不能安排 liupengsay 站在 (2, 6) 且小羊肖恩站在 (6, 2) ,因为站在 (4, 4) 的人处于围栏内。

示例 3:

​编辑

输入:points = [[3,1],[1,3],[1,1]]
输出:2
解释:总共有 2 种方案安排 liupengsay 和小羊肖恩的位置,使得 liupengsay 不会难过:
- liupengsay 站在 (1, 1) ,小羊肖恩站在 (3, 1) 。
- liupengsay 站在 (1, 3) ,小羊肖恩站在 (1, 1) 。
不能安排 liupengsay 站在 (1, 3) 且小羊肖恩站在 (3, 1) ,因为站在 (1, 1) 的人处于围栏内。
注意围栏是可以不包含任何面积的,上图中第一和第二个围栏都是合法的。

提示:

  • 2 <= n <= 1000
  • points[i].length == 2
  • -10^9 <= points[i][0], points[i][1] <= 10^9
  • points[i] 点对两两不同。

解题思路:

方法1:离散化前缀和

这个题目看一眼就知道是二维前缀和,只不过值域非常大,需要离散化,我们可以将x,y坐标放在一起离散化,也可以分开离散化,分开离散化时间和空间要求都低一些,所以我们分开离散化即可,由于需要使用前缀和,所以离散x的同时肯定还要离散化x-1,离散化y的同时还要离散化y-1。

时间复杂度:O(n^2),但是n最大2000。

空间复杂度:O(n^2),n最大2000。

按道理这个时间复杂度是能过的,但是由于这个双周赛case设计有问题,数据非常弱,导致比赛时很多O(n^3)暴力都水过去了,然后赛后为了卡掉那些暴力,加了一些case,可能还把时间限制放的很低,导致这个写法有时候能过,有时候会超时,相当于这个做法也被卡常了,我已经试过了,交了几发,有时候能过,有时候过不了。

离散化前缀和cpp代码如下:

const int N=2010;
int s[N][N];
class Solution {
public:int numberOfPairs(vector<vector<int>>& points) {unordered_map<int,int>mp1,mp2; //mp1用于离散化x坐标,mp2离散化y坐标vector<int>nums1,nums2;int n=points.size();int cnt1=0,cnt2=0;for(auto& t:points){int x=t[0],y=t[1];nums1.push_back(x);nums1.push_back(x-1);nums2.push_back(y);nums2.push_back(y-1);}//x,y坐标分别离散化sort(nums1.begin(),nums1.end());sort(nums2.begin(),nums2.end());for(int i=0;i<nums1.size();i++){int v1=nums1[i],v2=nums2[i];if(i==0)mp1[v1]=++cnt1,mp2[v2]=++cnt2;else {if(nums1[i]!=nums1[i-1])mp1[nums1[i]]=++cnt1;if(nums2[i]!=nums2[i-1])mp2[nums2[i]]=++cnt2;}}//根据离散化之后x,y坐标数,初始化前缀和int mx1=cnt1,mx2=cnt2;// vector<vector<int>>s(mx1+1,vector<int>(mx2+1));for(int i=1;i<=mx1;i++)for(int j=1;j<=mx2;j++)s[i][j]=0;for(auto&t:points){int x=t[0],y=t[1];s[mp1[x]][mp2[y]]++;}//预处理前缀和for(int i=1;i<=mx1;i++)for(int j=1;j<=mx2;j++)s[i][j]+=s[i-1][j]+s[i][j-1]-s[i-1][j-1];//枚举int ans=0;for(int i=0;i<n;i++){int x1=mp1[points[i][0]],y1=mp2[points[i][1]];for(int j=0;j<n;j++){if(i==j)continue;int x2=mp1[points[j][0]],y2=mp2[points[j][1]];if(x2>=x1 && y2<=y1){if(s[x2][y1]-s[x2][y2-1]-s[x1-1][y1]+s[x1-1][y2-1]==2){ans++;}}}}return ans;}
};

方法二:挖掘性质+枚举

首先题目说了一个在左上角,一个在右下角,从左往右横坐标x递增,从上往下纵坐标递减,所以我们从按照横坐标从小到达排序,横坐标相同时,纵坐标从大到小排序,固定i,从j=i+1枚举,那么j的纵坐标必须小于等于i的纵坐标,同时j的纵坐标必须大于前面枚举的所有点的纵坐标,才能保证i为左上角,j为右下角的矩形里面和边界没有其他点。

时间复杂度:O(n^2)

空间复杂度:O(1),不考虑排序使用的栈空间。

挖掘性质+枚举cpp代码如下:

class Solution {
public:int numberOfPairs(vector<vector<int>>& points) {sort(points.begin(),points.end(),[&](vector<int>&A,vector<int>&B){return A[0]!=B[0]?A[0]<B[0]:A[1]>B[1];});int ans=0,n=points.size();for(int i=0;i<n;i++){int y1=points[i][1];int max_y=-1e9-1;for(int j=i+1;j<n;j++){int y=points[j][1];if(y<=y1 && y>max_y){ans++;max_y=y;}}}return ans;}
};

这篇关于leetcode 3027. 人员站位的方案数 II【离散化前缀和+枚举】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/697455

相关文章

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

IDEA中Git版本回退的两种实现方案

《IDEA中Git版本回退的两种实现方案》作为开发者,代码版本回退是日常高频操作,IntelliJIDEA集成了强大的Git工具链,但面对reset和revert两种核心回退方案,许多开发者仍存在选择... 目录一、版本回退前置知识二、Reset方案:整体改写历史1、IDEA图形化操作(推荐)1.1、查看提

Python实现html转png的完美方案介绍

《Python实现html转png的完美方案介绍》这篇文章主要为大家详细介绍了如何使用Python实现html转png功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 1.增强稳定性与错误处理建议使用三层异常捕获结构:try: with sync_playwright(

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir

MySQL中闪回功能的方案讨论及实现

《MySQL中闪回功能的方案讨论及实现》Oracle有一个闪回(flashback)功能,能够用户恢复误操作的数据,这篇文章主要来和大家讨论一下MySQL中支持闪回功能的方案,有需要的可以了解下... 目录1、 闪回的目标2、 无米无炊一3、 无米无炊二4、 演示5、小结oracle有一个闪回(flashb

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Java嵌套for循环优化方案分享

《Java嵌套for循环优化方案分享》介绍了Java中嵌套for循环的优化方法,包括减少循环次数、合并循环、使用更高效的数据结构、并行处理、预处理和缓存、算法优化、尽量减少对象创建以及本地变量优化,通... 目录Java 嵌套 for 循环优化方案1. 减少循环次数2. 合并循环3. 使用更高效的数据结构4