YOLOv5 Focus C3 各模块详解及代码实现

2024-02-10 01:59

本文主要是介绍YOLOv5 Focus C3 各模块详解及代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • yolov5s.yaml
    • yolov5s.yaml基本参数含义
      • 一些基本参数:
      • BackBone:
      • Head
  • Focus
    • 一、Focus模块的作用
    • Focus的参数量
    • Yolov3和Yolov5的改进对比
    • 关于Focus的补充
      • 网络结构图
  • C3模块
  • Conv模块
  • Bottleneck模块
  • SPP模块
    • SPPF
      • SPP和SPPF对比实验
  • 引用

主要从yolov5s.yaml 的配置文件来逐一解析其中的模块:Focus、C3、SPP、Conv、Bottleneck模块。
这个是针对最早的v5版本进行讲解,现在2022最新版本是V6.2。有一些细节的差别比如Backbone部分Focus倍替换成6*6的Conv,Neck部分SPP被替换成SPPF等,想要深入学习建议去github学习源码。

yolov5s.yaml

# Parameters
nc: 5  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multipleanchors:- [24,24,29,84,59,42]  # P3/8- [45,146,75,87,157,49]  # P4/16- [310,167,139,341,127,151]  # P5/32# YOLOv5 backbone
backbone:# [from, number, module, args][[-1, 1, Focus, [64, 3]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 9, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 1, SPP, [1024, [5, 9, 13]]],[-1, 3, C3, [1024, False]],  # 9]# YOLOv5 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

yolov5s.yaml基本参数含义

yolov5的各个版本参数的含义是一样的,不同的地方在于网络通道数和模块重复数量,所以只要理解了这个配置文件其他的版本都是差不多意思。

一些基本参数:

nc :数据集中物体的类别数
depth_multiple: 控制网络深度的系数
width_multiple: 控制网络宽度的系数
anchors :给不同尺度特征图分配的anchors,可以看到包含三个列表,表示给三个尺度分配,这三个尺度在**[[17, 20, 23], 1, Detect, [nc, anchors]] 指明**,分别是网络的第17、20和23层。注释P3/8是指输入下采样了23 = 8倍,我们也可以发现网络的第17层特征图为输入的1/8。 根据不同的数据集可以使用K-means聚类算法生成最符合数据集的anchor框。

BackBone:

骨干网络的定义,是一个列表,每一行表示一层。可以看到每一行是有4个元素的列表,[from, number, module, args]说明了这个4个元素的意思。

from: 表示该层的输入从哪来。-1表示输入取自上一层,-2表示上两层,3表示第3层(从0开始数),[-1, 4]表示取自上一层和第4层,依次类推。。。网络层数的数法在注释里已经标出来了,从0开始,每一行表示一层,例如0-P1/2表示第0层,特征图尺寸为输入的1/21。

number: 表示该层模块堆叠的次数,对于C3、BottleneckCSP等模块,表示其子模块的堆叠,具体细节可以查看源代码。当然最终的次数还要乘上depth_multiple系数。

module :表示该层的模块是啥。Conv就是卷积+BN+激活模块。所有的模块在 model/common.py 中都有定义。

args: 表示输入到模块的参数。例如Conv:[128, 3, 2] 表示输出通道128,卷积核尺寸3,strid=2,当然最终的输出通道数还要乘上 width_multiple,对于其他模块,第一个参数值一般都是指输出通道数,具体细节可以看 model/common.py 中的定义。

Head

规则和BackBone一毛一样,这里再解释一些最后一层:
[[17, 20, 23], 1, Detect, [nc, anchors]] 表示把第17、20和23三层作为Detect模块的输入, [nc, anchors]是初始化Detect模块的参数。Detect模块在model/yolo.py中声明,相当于从模型中提出想要的层作为输入,转换为相应的检测头,其输出用来计算loss。

Focus

一、Focus模块的作用

Focus模块在v5中是图片进入backbone前,对图片进行切片操作,具体操作是在一张图片中每隔一个像素拿到一个值,类似于邻近下采样,这样就拿到了四张图片,四张图片互补,长的差不多,但是没有信息丢失,这样一来,将W、H信息就集中到了通道空间,输入通道扩充了4倍,即拼接起来的图片相对于原先的RGB三通道模式变成了12个通道,最后将得到的新图片再经过卷积操作,最终得到了没有信息丢失情况下的二倍下采样特征图。

以yolov5s为例,原始的640 × 640 × 3的图像输入Focus结构,采用切片操作,先变成320 × 320 × 12的特征图,再经过一次卷积操作,最终变成320 × 320 × 32的特征图。切片操作如下:
在这里插入图片描述

在项目的common.py中有具体代码实现:

class Focus(nn.Module):# Focus wh information into c-spacedef __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groupssuper(Focus, self).__init__()self.conv = Conv(c1 * 4, c2, k, s, p, g, act)      # 这里输入通道变成了4倍def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))

不太理解张量切片操作的朋友可以具体看看我讲解的切片操作链接: Pytorch 张量操作 Python切片操作

Focus的参数量

参数数量(params):关系到模型大小,单位通常是M,通常参数用float32表示,所以模型大小是参数数量的4倍。

计算量(FLOPs):即浮点运算数,可以用来衡量算法/模型的复杂度,这关系到算法速度,大模型的单位通常为G,小模型单位通常为M;通常只考虑乘加操作的数量,而且只考虑Conv和FC等参数层的计算量,忽略BN和PReLU等,一般情况下,Conv和FC层也会忽略仅纯加操作的计算量,如bias偏置加和shoutcut残差加等,目前技术有BN和CNN可以不加bias。

params计算公式:

Kh × Kw × Cin × Cout

FLOPs计算公式:

Kh × Kw × Cin × Cout × H × W = 即(当前层filter × 输出的feature map)= params × H × W

总所周知,图片在经过Focus模块后,最直观的是起到了下采样的作用,但是和常用的卷积下采样有些不一样,可以对Focus的计算量和普通卷积的下采样计算量进行做个对比:

在yolov5s的网络结构中,可以看到,Focus模块的卷积核是3 × 3,输出通道是32:
在这里插入图片描述
那么做个对比:

**普通下采样:**即将一张640 × 640 × 3的图片输入3 × 3的卷积中,步长为2,输出通道32,下采样后得到320 × 320 × 32的特征图,那么普通卷积下采样理论的计算量为:

FLOPs(conv) = 3 × 3 × 3 × 32 × 320 × 320 = 88473600(不考虑bias情况下)
params参数量(conv) = 3 × 3 × 3 × 32 +32 +32 = 928 (后面两个32分别为bias和BN层参数)

**Focus:**将640 × 640 × 3的图像输入Focus结构,采用切片操作,先变成320 × 320 × 12的特征图,再经过3 × 3的卷积操作,输出通道32,最终变成320 × 320 × 32的特征图,那么Focus理论的计算量为:

FLOPs(Focus) = 3 × 3 × 12 × 32 × 320 × 320 = 353894400(不考虑bias情况下)
params参数量(Focus)= 3 × 3 × 12 × 32 +32 +32 =3520 (为了呼应上图输出的参数量,将后面两个32分别为bias和BN层的参数考虑进去,通常这两个占比比较小可以忽略)

可以明显的看到,Focus的计算量和参数量要比普通卷积要多一些,是普通卷积的4倍,但是下采样时没有信息的丢失。

Yolov3和Yolov5的改进对比

大家可以思考一下,为什么Focus的参数量变大了反而yolov5的推理速度比V3更快精度还更高呢?

对比两者的配置文件可以发现,V5将V3的三层直接用一层Focus替代了,并且Focus不会像下采样那样丢失图片特征信息。所以v5可以又快又准的提升网络性能,Focus做出了不小的功劳,Focus既有下采样的功能,但又在不损失图片信息的前提下下采样。

Focus模块的作用是对图片进行切片,类似于下采样,先将图片变为320×320×12的特征图,再经过3×3的卷积操作,输出通道32,最终变为320×320×32的特征图,是一般卷积计算量的4倍,如此做下采样将无信息丢失。

在这里插入图片描述

关于Focus的补充

YOLOv5在v6.0版本后相比之前版本有一个很小的改动,把网络的第一层(原来是Focus模块)换成了一个6x6大小的卷积层。两者在理论上其实等价的,但是对于现有的一些GPU设备(以及相应的优化算法)使用6x6大小的卷积层比使用Focus模块更加高效。详情可以参考这个issue #4825下图是原来的Focus模块(和之前Swin Transformer中的Patch Merging类似),将每个2x2的相邻像素划分为一个patch,然后将每个patch中相同位置(同一颜色)像素给拼在一起就得到了4个feature map,然后在接上一个3x3大小的卷积层。这和直接使用一个6x6大小的卷积层等效。

网络结构图

具体的网络结构图,可以参考导师画的。在B站也有详细的讲解视频和讲解的博客,导师博客已经获得v5作者Glenn Jocher认可,粉丝太有面子了(都给我哭)。互动现场#6998

在这里插入图片描述

C3模块

作用:
1 在新版yolov5中,作者将BottleneckCSP(瓶颈层)模块转变为了C3模块,其结构作用基本相同均为CSP架构,只是在修正单元的选择上有所不同,其包含了3个标准卷积层以及多个Bottleneck模块(数量由配置文件.yaml的n和depth_multiple参数乘积决定)

2 C3相对于BottleneckCSP模块不同的是,经历过残差输出后的Conv模块被去掉了,concat后的标准卷积模块中的激活函数也由LeakyRelu变为了SiLU(同上)。

3 该模块是对残差特征进行学习的主要模块,其结构分为两支,一支使用了上述指定多个Bottleneck堆叠和3个标准卷积层,另一支仅经过一个基本卷积模块,最后将两支进行concat操作。

代码实现:

class C3(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper(C3, self).__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

Conv模块

对输入的特征图执行卷积,BN,激活函数操作,在新版的YOLOv5中,作者使用Silu作为激活函数.

代码实现:

class Conv(nn.Module):# Standard convolution# ch_in, ch_out, kernel, stride, padding, groupsdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):# k为卷积核大小,s为步长# g即group,当g=1时,相当于普通卷积,当g>1时,进行分组卷积。# 分组卷积相对与普通卷积减少了参数量,提高训练效率super(Conv, self).__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = nn.Hardswish() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())def forward(self, x):return self.act(self.bn(self.conv(x)))def fuseforward(self, x):return self.act(self.conv(x))

Bottleneck模块

作用:

1 先将channel 数减小再扩大(默认减小到一半),具体做法是先进行1×1卷积将channel减小一半,再通过3×3卷积将通道数加倍,并获取特征(共使用两个标准卷积模块),其输入与输出的通道数是不发生改变的。

2 shortcut参数控制是否进行残差连接(使用ResNet)。

3 在yolov5的backbone中的Bottleneck都默认使shortcut为True,在head中的Bottleneck都不使用shortcut。

4 与ResNet对应的,使用add而非concat进行特征融合,使得融合后的特征数不变。

实现:

class Bottleneck(nn.Module):# Standard bottleneckdef __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansionsuper(Bottleneck, self).__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_, c2, 3, 1, g=g)self.add = shortcut and c1 == c2def forward(self, x):return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

SPP模块

SPP结构
在这里插入图片描述

作用:

1 SPP是空间金字塔池化的简称,其先通过一个标准卷积模块将输入通道减半,然后分别做kernel-size为5,9,13的maxpooling(对于不同的核大小,padding是自适应的)。

2 对三次最大池化的结果与未进行池化操作的数据进行concat,最终合并后channel数是原来的2倍。

代码实现:

class SPP(nn.Module):# Spatial pyramid pooling layer used in YOLOv3-SPPdef __init__(self, c1, c2, k=(5, 9, 13)):super(SPP, self).__init__()c_ = c1 // 2  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])def forward(self, x):x = self.cv1(x)return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))

SPPF

V5的6.0版本后Neck部分将SPP换成成了SPPF(Glenn Jocher自己设计的),两者的作用是一样的,但后者效率更高。SPP结构如下图所示,是将输入并行通过多个不同大小的MaxPool,然后做进一步融合,能在一定程度上解决目标多尺度问题。

SPPF结构
在这里插入图片描述

SPP和SPPF对比实验

下面做个简单的小实验,对比下SPP和SPPF的计算结果以及速度,代码如下(注意这里将SPPF中最开始和结尾处的1x1卷积层给去掉了,只对比含有MaxPool的部分)。
来自导师代码

import time
import torch
import torch.nn as nnclass SPP(nn.Module):def __init__(self):super().__init__()self.maxpool1 = nn.MaxPool2d(5, 1, padding=2)self.maxpool2 = nn.MaxPool2d(9, 1, padding=4)self.maxpool3 = nn.MaxPool2d(13, 1, padding=6)def forward(self, x):o1 = self.maxpool1(x)o2 = self.maxpool2(x)o3 = self.maxpool3(x)return torch.cat([x, o1, o2, o3], dim=1)class SPPF(nn.Module):def __init__(self):super().__init__()self.maxpool = nn.MaxPool2d(5, 1, padding=2)def forward(self, x):o1 = self.maxpool(x)o2 = self.maxpool(o1)o3 = self.maxpool(o2)return torch.cat([x, o1, o2, o3], dim=1)def main():input_tensor = torch.rand(8, 32, 16, 16)spp = SPP()sppf = SPPF()output1 = spp(input_tensor)output2 = sppf(input_tensor)print(torch.equal(output1, output2))t_start = time.time()for _ in range(100):spp(input_tensor)print(f"spp time: {time.time() - t_start}")t_start = time.time()for _ in range(100):sppf(input_tensor)print(f"sppf time: {time.time() - t_start}")if __name__ == '__main__':main()

输出

True
spp time: 0.5373051166534424
sppf time: 0.20780706405639648

通过对比可以发现,两者的计算结果是一模一样的,但SPPF比SPP计算速度快了不止两倍,快乐翻倍。

Neck部分另外一个不同点就是New CSP-PAN了,在YOLOv4中,Neck的PAN结构是没有引入CSP结构的,但在YOLOv5中作者在PAN结构中加入了CSP。详情见上面的网络结构图,每个C3模块里都含有CSP结构。在Head部分,YOLOv3, v4, v5都是一样的。

引用

yolov5模型配置yaml文件详解
yolov5中的Focus模块的理解
【YOLOV5】YOLOv5模块解析
YOLOv5网络详解

这篇关于YOLOv5 Focus C3 各模块详解及代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/695856

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load