理解GloVe模型(+总结)

2024-02-09 23:32
文章标签 总结 模型 理解 glove

本文主要是介绍理解GloVe模型(+总结),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

  • 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息
  • 输入:语料库
  • 输出:词向量
  • 方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学习词向量。*开始 -> 统计共现矩阵 -> 训练词向量 -> 结束

统计共现矩阵

设共现矩阵为X,其元素为Xi,j
Xi,j的意义为:在整个语料库中,单词i和单词j共同出现在一个窗口中的次数。
举个栗子:
设有语料库:

i love you but you love him i am sad
这个小小的语料库只有1个句子,涉及到7个单词:i、love、you、but、him、am、sad。
如果我们采用一个窗口宽度为5(左右长度都为2)的统计窗口,那么就有以下窗口内容:

窗口标号中心词窗口内容
0ii love you
1lovei love you but
2youi love you but you
3butlove you but you love
4youyou but you love him
5lovebut you love him i
6himyou love him i am
7ilove him i am sad
8amhim i am sad
9sadi am sad

窗口0、1长度小于5是因为中心词左侧内容少于2个,同理窗口8、9长度也小于5。
以窗口5为例说明如何构造共现矩阵:
中心词为love,语境词为but、you、him、i;则执行:

X_{love,but}+=1
X_{love,you}+=1
X_{love,him}+=1
X_{love,i}+=1

使用窗口将整个语料库遍历一遍,即可得到共现矩阵X。

使用GloVe模型训练词向量

模型公式

先看模型,代价函数长这个样子:

J = ∑ i , j N f ( X i , j ) ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=∑_{i,j}^Nf(X_{i,j})(v^T_iv_j+b_i+b_j−log(X_{i,j}))^2 J=i,jNf(Xi,j)(viTvj+bi+bjlog(Xi,j))2
v i v_i vi v j v_j vj是单词i和单词j的词向量, b i b_i bi b j b_j bj是两个标量(作者定义的偏差项),f是权重函数(具体函数公式及功能下一节介绍),N是词汇表的大小(共现矩阵维度为N*N)。
可以看到,GloVe模型没有使用神经网络的方法。

模型怎么来的

那么作者为什么这么构造模型呢?首先定义几个符号:

X i = ∑ j = 1 N X i , j X_i=∑_{j=1}^NX_{i,j} Xi=j=1NXi,j
其实就是矩阵单词i那一行的和;
P i , k = X i , k X i P_{i,k}=X_{i,k}X_i Pi,k=Xi,kXi
条件概率,表示单词k出现在单词i语境中的概率;
r a t i o i , j , k = P i , k P j , k ratio_{i,j,k}=P_{i,k}P_{j,k} ratioi,j,k=Pi,kPj,k
两个条件概率的比率。
作者的灵感是这样的:
作者发现,ratio_{i,j,k}这个指标是有规律的,规律统计在下表:

ratioi,j,k的值单词j,k相关单词j,k不相关
单词i,k相关趋近1很大
单词i,k不相关很小趋近1

很简单的规律,但是有用。
思想:假设我们已经得到了词向量,如果我们用词向量 v i v_{i} vi v j v_{j} vj v k v_{k} vk通过某种函数计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k,能够同样得到这样的规律的话,就意味着我们词向量与共现矩阵具有很好的一致性,也就说明我们的词向量中蕴含了共现矩阵中所蕴含的信息。
设用词向量 v i v_{i} vi v j v_{j} vj v k v_{k} vk计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k的函数为g(vi,vj,vk)(我们先不去管具体的函数形式),那么应该有:
P i , k P j , k = r a t i o i , j , k = g ( v i , v j , v k ) P_{i,k}P_{j,k}=ratio_{i,j,k}=g(v_i,v_j,v_k) Pi,kPj,k=ratioi,j,k=g(vi,vj,vk)
即:
P i , k P j , k = g ( v i , v j , v k ) P_{i,k}P_{j,k}=g(v_i,v_j,v_k) Pi,kPj,k=g(vi,vj,vk)
即二者应该尽可能地接近;
很容易想到用二者的差方来作为代价函数:
J = ∑ i , j , k N ( P i , k P j , k − g ( v i , v j , v k ) ) 2 J=∑_{i,j,k}^N(\frac{P_{i,k}}{P_{j,k}}−g(v_i,v_j,v_k))^2 J=i,j,kN(Pj,kPi,kg(vi,vj,vk))2
但是仔细一看,模型中包含3个单词,这就意味着要在NNN的复杂度上进行计算,太复杂了,最好能再简单点。
现在我们来仔细思考g(vi,vj,vk),或许它能帮上忙;
作者的脑洞是这样的:

  1. 要考虑单词i和单词j之间的关系,那g(vi,vj,vk)中大概要有这么一项吧:vi−vj;嗯,合理,在线性空间中考察两个向量的相似性,不失线性地考察,那么vi−vj大概是个合理的选择;
    2. r a t i o i , j , k ratio_{i,j,k} ratioi,j,k是个标量,那么g(vi,vj,vk)最后应该是个标量啊,虽然其输入都是向量,那內积应该是合理的选择,于是应该有这么一项吧: ( v i − v j ) T v k (vi−vj)^Tv_k (vivj)Tvk
  2. 然后作者又往 ( v i − v j ) T v k (vi−vj)^Tv_k (vivj)Tvk的外面套了一层指数运算exp(),得到最终的g(vi,vj,vk)=exp( ( v i − v j ) T v k (vi−vj)^Tv_k (vivj)Tvk);
    最关键的第3步,为什么套了一层exp()?
    套上之后,我们的目标是让以下公式尽可能地成立:
    P i , k P j , k = g ( v i , v j , v k ) P_{i,k}P_{j,k}=g(v_i,v_j,v_k) Pi,kPj,k=g(vi,vj,vk)
    即:
    P i , k P j , k = e x p ( ( v i − v j ) T v k ) P_{i,k}P_{j,k}=exp((v_i−v_j)^Tv_k) Pi,kPj,k=exp((vivj)Tvk)
    即:
    P i , k P j , k = e x p ( v i T v k − v j T v k ) P_{i,k}P_{j,k}=exp(v^T_iv_k−v^T_jv_k) Pi,kPj,k=exp(viTvkvjTvk)
    即:
    P i , k P j , k = e x p ( v i T v k ) e x p ( v j T v k ) P_{i,k}P_{j,k}=exp(v^T_iv_k)exp(v^T_jv_k) Pi,kPj,k=exp(viTvk)exp(vjTvk)
    然后就发现找到简化方法了:只需要让上式分子对应相等,分母对应相等,即:
    P i , k = e x p ( v i T v k ) P_{i,k}=exp(v^T_iv_k) Pi,k=exp(viTvk)并且 P j , k = e x p ( v j T v k ) P_{j,k}=exp(v^T_jv_k) Pj,k=exp(vjTvk)
    然而分子分母形式相同,就可以把两者统一考虑了,即:
    P i , j = e x p ( v i T v j ) P_{i,j}=exp(v^T_iv_j) Pi,j=exp(viTvj)
    本来我们追求:
    P i , k P j , k = g ( v i , v j , v k ) P_{i,k}P_{j,k}=g(v_i,v_j,v_k) Pi,kPj,k=g(vi,vj,vk)
    现在只需要追求:
    P i , j = e x p ( v i T v j ) P_{i,j}=exp(v^T_iv_j) Pi,j=exp(viTvj)
    两边取个对数:
    l o g ( P i , j ) = v i T v j log(P_{i,j})=v^T_iv_j log(Pi,j)=viTvj
    那么代价函数就可以简化为:
    J = ∑ i , j N ( l o g ( P i , j ) − v i T v j ) 2 J=∑_{i,j}^N(log(P_{i,j})−v^T_iv_j)^2 J=i,jN(log(Pi,j)viTvj)2
    现在只需要在NN的复杂度上进行计算,而不是NN*N,现在关于为什么第3步中,外面套一层exp()就清楚了,正是因为套了一层exp(),才使得差形式变成商形式,进而等式两边分子分母对应相等,进而简化模型。
    然而,出了点问题。
    仔细看这两个式子:
    l o g ( P i , j ) = v i T v j log(P_{i,j})=v^T_iv_j log(Pi,j)=viTvj l o g ( P j , i ) = v j T v i log(P_{j,i})=v^T_jv_i log(Pj,i)=vjTvi
    l o g ( P i , j ) log(P_{i,j}) log(Pi,j)不等于 l o g ( P j , i ) log(P_{j,i}) log(Pj,i)但是 v i T v j v^T_iv_j viTvj等于 v j T v i v^T_jv_i vjTvi;即等式左侧不具有对称性,但是右侧具有对称性。
    数学上出了问题。
    补救一下好了。
    现将代价函数中的条件概率展开:
    l o g ( P i , j ) = v i T v j log(P_{i,j})=v^T_iv_j log(Pi,j)=viTvj
    即为:
    l o g ( X i , j ) − l o g ( X i ) = v i T v j log(X_{i,j})−log(X_i)=v^T_iv_j log(Xi,j)log(Xi)=viTvj
    将其变为:
    l o g ( X i , j ) = v i T v j + b i + b j log(X_{i,j})=v^T_iv_j+b_i+b_j log(Xi,j)=viTvj+bi+bj
    即添了一个偏差项bj,并将log(Xi)吸收到偏差项bi中。
    于是代价函数就变成了:
    J = ∑ i , j N ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=∑_{i,j}^N(v^T_iv_j+b_i+b_j−log(X_{i,j}))^2 J=i,jN(viTvj+bi+bjlog(Xi,j))2
    然后基于出现频率越高的词对儿权重应该越大的原则,在代价函数中添加权重项,于是代价函数进一步完善:
    J = ∑ i , j N f ( X i , j ) ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=∑_{i,j}^Nf(X_{i,j})(v^T_iv_j+b_i+b_j-log(X_{i,j}))^2 J=i,jNf(Xi,j)(viTvj+bi+bjlog(Xi,j))2
    具体权重函数应该是怎么样的呢?
    首先应该是非减的,其次当词频过高时,权重不应过分增大,作者通过实验确定权重函数为:
    f ( x ) = { ( x / x m a x ) 0.75 , if  x &lt; x m a x 1 , if  x &gt; = x m a x f(x)=\begin{cases} (x/xmax)^{0.75}, &amp; \text {if $x&lt;xmax$} \\ 1, &amp; \text {if $x&gt;=xmax$} \end{cases} f(x)={(x/xmax)0.75,1,if x<xmaxif x>=xmax
    到此,整个模型就介绍完了。

Glove和skip-gram、CBOW模型对比

Cbow/Skip-Gram 是一个local context window的方法,比如使用NS来训练,缺乏了整体的词和词的关系,负样本采用sample的方式会缺失词的关系信息。
另外,直接训练Skip-Gram类型的算法,很容易使得高曝光词汇得到过多的权重

Global Vector融合了矩阵分解Latent Semantic Analysis (LSA)的全局统计信息和local context window优势。融入全局的先验统计信息,可以加快模型的训练速度,又可以控制词的相对权重。

我的理解是skip-gram、CBOW每次都是用一个窗口中的信息更新出词向量,但是Glove则是用了全局的信息(共现矩阵),也就是多个窗口进行更新

这篇关于理解GloVe模型(+总结)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/695593

相关文章

C# List.Sort四种重载总结

《C#List.Sort四种重载总结》本文详细分析了C#中List.Sort()方法的四种重载形式及其实现原理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录1. Sort方法的四种重载2. 具体使用- List.Sort();- IComparable

SpringBoot项目整合Netty启动失败的常见错误总结

《SpringBoot项目整合Netty启动失败的常见错误总结》本文总结了SpringBoot集成Netty时常见的8类问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、端口冲突问题1. Tomcat与Netty端口冲突二、主线程被阻塞问题1. Netty启动阻

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

python3中正则表达式处理函数用法总结

《python3中正则表达式处理函数用法总结》Python中的正则表达式是一个强大的文本处理工具,用于匹配、查找、替换等操作,在Python中正则表达式的操作主要通过内置的re模块来实现,这篇文章主要... 目录前言re.match函数re.search方法re.match 与 re.search的区别检索

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

GO语言zap日志库理解和使用方法示例

《GO语言zap日志库理解和使用方法示例》Zap是一个高性能、结构化日志库,专为Go语言设计,它由Uber开源,并且在Go社区中非常受欢迎,:本文主要介绍GO语言zap日志库理解和使用方法的相关资... 目录1. zap日志库介绍2.安装zap库3.配置日志记录器3.1 Logger3.2 Sugared

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

深入理解MySQL流模式

《深入理解MySQL流模式》MySQL的Binlog流模式是一种实时读取二进制日志的技术,允许下游系统几乎无延迟地获取数据库变更事件,适用于需要极低延迟复制的场景,感兴趣的可以了解一下... 目录核心概念一句话总结1. 背景知识:什么是 Binlog?2. 传统方式 vs. 流模式传统文件方式 (非流式)流

深入理解Go之==的使用

《深入理解Go之==的使用》本文主要介绍了深入理解Go之==的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录概述类型基本类型复合类型引用类型接口类型使用type定义的类型不可比较性谈谈map总结概述相信==判等操作,大

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法