理解GloVe模型(+总结)

2024-02-09 23:32
文章标签 总结 模型 理解 glove

本文主要是介绍理解GloVe模型(+总结),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

  • 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息
  • 输入:语料库
  • 输出:词向量
  • 方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学习词向量。*开始 -> 统计共现矩阵 -> 训练词向量 -> 结束

统计共现矩阵

设共现矩阵为X,其元素为Xi,j
Xi,j的意义为:在整个语料库中,单词i和单词j共同出现在一个窗口中的次数。
举个栗子:
设有语料库:

i love you but you love him i am sad
这个小小的语料库只有1个句子,涉及到7个单词:i、love、you、but、him、am、sad。
如果我们采用一个窗口宽度为5(左右长度都为2)的统计窗口,那么就有以下窗口内容:

窗口标号中心词窗口内容
0ii love you
1lovei love you but
2youi love you but you
3butlove you but you love
4youyou but you love him
5lovebut you love him i
6himyou love him i am
7ilove him i am sad
8amhim i am sad
9sadi am sad

窗口0、1长度小于5是因为中心词左侧内容少于2个,同理窗口8、9长度也小于5。
以窗口5为例说明如何构造共现矩阵:
中心词为love,语境词为but、you、him、i;则执行:

X_{love,but}+=1
X_{love,you}+=1
X_{love,him}+=1
X_{love,i}+=1

使用窗口将整个语料库遍历一遍,即可得到共现矩阵X。

使用GloVe模型训练词向量

模型公式

先看模型,代价函数长这个样子:

J = ∑ i , j N f ( X i , j ) ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=∑_{i,j}^Nf(X_{i,j})(v^T_iv_j+b_i+b_j−log(X_{i,j}))^2 J=i,jNf(Xi,j)(viTvj+bi+bjlog(Xi,j))2
v i v_i vi v j v_j vj是单词i和单词j的词向量, b i b_i bi b j b_j bj是两个标量(作者定义的偏差项),f是权重函数(具体函数公式及功能下一节介绍),N是词汇表的大小(共现矩阵维度为N*N)。
可以看到,GloVe模型没有使用神经网络的方法。

模型怎么来的

那么作者为什么这么构造模型呢?首先定义几个符号:

X i = ∑ j = 1 N X i , j X_i=∑_{j=1}^NX_{i,j} Xi=j=1NXi,j
其实就是矩阵单词i那一行的和;
P i , k = X i , k X i P_{i,k}=X_{i,k}X_i Pi,k=Xi,kXi
条件概率,表示单词k出现在单词i语境中的概率;
r a t i o i , j , k = P i , k P j , k ratio_{i,j,k}=P_{i,k}P_{j,k} ratioi,j,k=Pi,kPj,k
两个条件概率的比率。
作者的灵感是这样的:
作者发现,ratio_{i,j,k}这个指标是有规律的,规律统计在下表:

ratioi,j,k的值单词j,k相关单词j,k不相关
单词i,k相关趋近1很大
单词i,k不相关很小趋近1

很简单的规律,但是有用。
思想:假设我们已经得到了词向量,如果我们用词向量 v i v_{i} vi v j v_{j} vj v k v_{k} vk通过某种函数计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k,能够同样得到这样的规律的话,就意味着我们词向量与共现矩阵具有很好的一致性,也就说明我们的词向量中蕴含了共现矩阵中所蕴含的信息。
设用词向量 v i v_{i} vi v j v_{j} vj v k v_{k} vk计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k的函数为g(vi,vj,vk)(我们先不去管具体的函数形式),那么应该有:
P i , k P j , k = r a t i o i , j , k = g ( v i , v j , v k ) P_{i,k}P_{j,k}=ratio_{i,j,k}=g(v_i,v_j,v_k) Pi,kPj,k=ratioi,j,k=g(vi,vj,vk)
即:
P i , k P j , k = g ( v i , v j , v k ) P_{i,k}P_{j,k}=g(v_i,v_j,v_k) Pi,kPj,k=g(vi,vj,vk)
即二者应该尽可能地接近;
很容易想到用二者的差方来作为代价函数:
J = ∑ i , j , k N ( P i , k P j , k − g ( v i , v j , v k ) ) 2 J=∑_{i,j,k}^N(\frac{P_{i,k}}{P_{j,k}}−g(v_i,v_j,v_k))^2 J=i,j,kN(Pj,kPi,kg(vi,vj,vk))2
但是仔细一看,模型中包含3个单词,这就意味着要在NNN的复杂度上进行计算,太复杂了,最好能再简单点。
现在我们来仔细思考g(vi,vj,vk),或许它能帮上忙;
作者的脑洞是这样的:

  1. 要考虑单词i和单词j之间的关系,那g(vi,vj,vk)中大概要有这么一项吧:vi−vj;嗯,合理,在线性空间中考察两个向量的相似性,不失线性地考察,那么vi−vj大概是个合理的选择;
    2. r a t i o i , j , k ratio_{i,j,k} ratioi,j,k是个标量,那么g(vi,vj,vk)最后应该是个标量啊,虽然其输入都是向量,那內积应该是合理的选择,于是应该有这么一项吧: ( v i − v j ) T v k (vi−vj)^Tv_k (vivj)Tvk
  2. 然后作者又往 ( v i − v j ) T v k (vi−vj)^Tv_k (vivj)Tvk的外面套了一层指数运算exp(),得到最终的g(vi,vj,vk)=exp( ( v i − v j ) T v k (vi−vj)^Tv_k (vivj)Tvk);
    最关键的第3步,为什么套了一层exp()?
    套上之后,我们的目标是让以下公式尽可能地成立:
    P i , k P j , k = g ( v i , v j , v k ) P_{i,k}P_{j,k}=g(v_i,v_j,v_k) Pi,kPj,k=g(vi,vj,vk)
    即:
    P i , k P j , k = e x p ( ( v i − v j ) T v k ) P_{i,k}P_{j,k}=exp((v_i−v_j)^Tv_k) Pi,kPj,k=exp((vivj)Tvk)
    即:
    P i , k P j , k = e x p ( v i T v k − v j T v k ) P_{i,k}P_{j,k}=exp(v^T_iv_k−v^T_jv_k) Pi,kPj,k=exp(viTvkvjTvk)
    即:
    P i , k P j , k = e x p ( v i T v k ) e x p ( v j T v k ) P_{i,k}P_{j,k}=exp(v^T_iv_k)exp(v^T_jv_k) Pi,kPj,k=exp(viTvk)exp(vjTvk)
    然后就发现找到简化方法了:只需要让上式分子对应相等,分母对应相等,即:
    P i , k = e x p ( v i T v k ) P_{i,k}=exp(v^T_iv_k) Pi,k=exp(viTvk)并且 P j , k = e x p ( v j T v k ) P_{j,k}=exp(v^T_jv_k) Pj,k=exp(vjTvk)
    然而分子分母形式相同,就可以把两者统一考虑了,即:
    P i , j = e x p ( v i T v j ) P_{i,j}=exp(v^T_iv_j) Pi,j=exp(viTvj)
    本来我们追求:
    P i , k P j , k = g ( v i , v j , v k ) P_{i,k}P_{j,k}=g(v_i,v_j,v_k) Pi,kPj,k=g(vi,vj,vk)
    现在只需要追求:
    P i , j = e x p ( v i T v j ) P_{i,j}=exp(v^T_iv_j) Pi,j=exp(viTvj)
    两边取个对数:
    l o g ( P i , j ) = v i T v j log(P_{i,j})=v^T_iv_j log(Pi,j)=viTvj
    那么代价函数就可以简化为:
    J = ∑ i , j N ( l o g ( P i , j ) − v i T v j ) 2 J=∑_{i,j}^N(log(P_{i,j})−v^T_iv_j)^2 J=i,jN(log(Pi,j)viTvj)2
    现在只需要在NN的复杂度上进行计算,而不是NN*N,现在关于为什么第3步中,外面套一层exp()就清楚了,正是因为套了一层exp(),才使得差形式变成商形式,进而等式两边分子分母对应相等,进而简化模型。
    然而,出了点问题。
    仔细看这两个式子:
    l o g ( P i , j ) = v i T v j log(P_{i,j})=v^T_iv_j log(Pi,j)=viTvj l o g ( P j , i ) = v j T v i log(P_{j,i})=v^T_jv_i log(Pj,i)=vjTvi
    l o g ( P i , j ) log(P_{i,j}) log(Pi,j)不等于 l o g ( P j , i ) log(P_{j,i}) log(Pj,i)但是 v i T v j v^T_iv_j viTvj等于 v j T v i v^T_jv_i vjTvi;即等式左侧不具有对称性,但是右侧具有对称性。
    数学上出了问题。
    补救一下好了。
    现将代价函数中的条件概率展开:
    l o g ( P i , j ) = v i T v j log(P_{i,j})=v^T_iv_j log(Pi,j)=viTvj
    即为:
    l o g ( X i , j ) − l o g ( X i ) = v i T v j log(X_{i,j})−log(X_i)=v^T_iv_j log(Xi,j)log(Xi)=viTvj
    将其变为:
    l o g ( X i , j ) = v i T v j + b i + b j log(X_{i,j})=v^T_iv_j+b_i+b_j log(Xi,j)=viTvj+bi+bj
    即添了一个偏差项bj,并将log(Xi)吸收到偏差项bi中。
    于是代价函数就变成了:
    J = ∑ i , j N ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=∑_{i,j}^N(v^T_iv_j+b_i+b_j−log(X_{i,j}))^2 J=i,jN(viTvj+bi+bjlog(Xi,j))2
    然后基于出现频率越高的词对儿权重应该越大的原则,在代价函数中添加权重项,于是代价函数进一步完善:
    J = ∑ i , j N f ( X i , j ) ( v i T v j + b i + b j − l o g ( X i , j ) ) 2 J=∑_{i,j}^Nf(X_{i,j})(v^T_iv_j+b_i+b_j-log(X_{i,j}))^2 J=i,jNf(Xi,j)(viTvj+bi+bjlog(Xi,j))2
    具体权重函数应该是怎么样的呢?
    首先应该是非减的,其次当词频过高时,权重不应过分增大,作者通过实验确定权重函数为:
    f ( x ) = { ( x / x m a x ) 0.75 , if  x &lt; x m a x 1 , if  x &gt; = x m a x f(x)=\begin{cases} (x/xmax)^{0.75}, &amp; \text {if $x&lt;xmax$} \\ 1, &amp; \text {if $x&gt;=xmax$} \end{cases} f(x)={(x/xmax)0.75,1,if x<xmaxif x>=xmax
    到此,整个模型就介绍完了。

Glove和skip-gram、CBOW模型对比

Cbow/Skip-Gram 是一个local context window的方法,比如使用NS来训练,缺乏了整体的词和词的关系,负样本采用sample的方式会缺失词的关系信息。
另外,直接训练Skip-Gram类型的算法,很容易使得高曝光词汇得到过多的权重

Global Vector融合了矩阵分解Latent Semantic Analysis (LSA)的全局统计信息和local context window优势。融入全局的先验统计信息,可以加快模型的训练速度,又可以控制词的相对权重。

我的理解是skip-gram、CBOW每次都是用一个窗口中的信息更新出词向量,但是Glove则是用了全局的信息(共现矩阵),也就是多个窗口进行更新

这篇关于理解GloVe模型(+总结)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/695593

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言