立体匹配算法(Stereo correspondence)

2024-02-09 22:10

本文主要是介绍立体匹配算法(Stereo correspondence),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SGM(Semi-Global Matching)原理:

SGM的原理在wiki百科和matlab官网上有比较详细的解释:
wiki matlab
如果想完全了解原理还是建议看原论文 paper(我就不看了,懒癌犯了。)
优质论文解读和代码实现
一位大神自己用c++实现的SGM算法github
先介绍两个重要的参数:
注:这一部分参考的是matlab的解释,后面的部分是参考的opencv的实现,细节可能有些出入,大体上是一致的。
Disparity Levels and Number of Directions

Disparity Levels

Disparity Levels: Disparity levels is a parameter used to define the search space for matching. As shown in figure below, the algorithm searches for each pixel in the Left Image from among D pixels in the Right Image. The D values generated are D disparity levels for a pixel in Left Image. The first D columns of Left Image are unused because the corresponding pixels in Right Image are not available for comparison. In the figure, w represents the width of the image and h is the height of the image. For a given image resolution, increasing the disparity level reduces the minimum distance to detect depth. Increasing the disparity level also increases the computation load of the algorithm. At a given disparity level, increasing the image resolution increases the minimum distance to detect depth. Increasing the image resolution also increases the accuracy of depth estimation. The number of disparity levels are proportional to the input image resolution for detection of objects at the same depth. This example supports disparity levels from 8 to 128 (both values inclusive). The explanation of the algorithm refers to 64 disparity levels. The models provided in this example can accept input images of any resolution.——matlab

字太多,看不懂,让gpt解释了一下:

# gpt生成,仅供本人理解SSD原理
import numpy as npdef compute_disparity(left_img, right_img, block_size=5, num_disparities=64):# 图像尺寸height, width = left_img.shape# 初始化视差图disparity_map = np.zeros_like(left_img)# 遍历每个像素for y in range(height):for x in range(width):# 定义搜索范围min_x = max(0, x - num_disparities // 2)max_x = min(width, x + num_disparities // 2)# 提取左图像块left_block = left_img[y:y+block_size, x:x+block_size]# 初始化最小 SSD 和对应的视差min_ssd = float('inf')best_disparity = 0# 在搜索范围内寻找最佳视差for d in range(min_x, max_x):# 提取右图像块right_block = right_img[y:y+block_size, d:d+block_size]# 计算 SSDssd = np.sum((left_block - right_block)**2)# 更新最小 SSD 和对应的视差if ssd < min_ssd:min_ssd = ssdbest_disparity = abs(x - d)# 将最佳视差保存到视差图中disparity_map[y, x] = best_disparityreturn disparity_map# 示例用法
left_img = np.random.randint(0, 255, size=(100, 100), dtype=np.uint8)
right_img = np.roll(left_img, shift=5, axis=1)  # 创建右图,右移了5个像素disparity_map = compute_disparity(left_img, right_img, block_size=5, num_disparities=64)# 可视化结果(这里简化为将视差图缩放以便可视化)
import matplotlib.pyplot as plt
plt.imshow(disparity_map, cmap='gray')
plt.title('Disparity Map')
plt.show()

这样就明白了,Disparity Levels就是计算视差的范围(视差搜索范围)。

Number of Directions

Number of Directions:

Number of Directions: In the SGBM algorithm, to optimize the cost function, the input image is considered from multiple directions. In general, accuracy of disparity result improves with increase in number of directions. This example analyzes five directions: left-to-right (A1), top-left-to-bottom-right (A2), top-to-bottom (A3), top-right-to-bottom-left (A4), and right-to-left (A5).
在这里插入图片描述

按照单一路径匹配像素不够稳健,按照图像进行二维最优的全局匹配时间复杂度太高(NP完全问题),所以SGM的作者使用一维路径聚合的方式来近似二维最优。
在这里插入图片描述
pic 参考

SAD和SSD

用SAD 或者 SSD计算图像相似度,来做匹配。
公式:
> 这里是引用
公式和代码虽然是gpt生成的,但是公式看起来没错,代码可以帮助理解,仅供参考。
代码里面的 num_disparities 就是 Disparity Levels

SGBM in opencv

本人用opencv较多,这里仅关注代码在opencv的实现。

opencv StereoSGBM_create示例:

# gpt生成,仅作为参考,具体请查看opencv官方文档https://docs.opencv.org/4.x/d2/d85/classcv_1_1StereoSGBM.html
import cv2
import numpy as np# 读取左右视图
left_image = cv2.imread('left_image.png', cv2.IMREAD_GRAYSCALE)
right_image = cv2.imread('right_image.png', cv2.IMREAD_GRAYSCALE)# 创建SGBM对象
sgbm = cv2.StereoSGBM_create(minDisparity=0,numDisparities=16,  # 视差范围,一般为16的整数倍blockSize=5,        # 匹配块的大小,一般为奇数P1=8 * 3 * 5 ** 2,   # SGBM算法参数P2=32 * 3 * 5 ** 2,  # SGBM算法参数disp12MaxDiff=1,    # 左右视差图的最大差异uniquenessRatio=10,  # 匹配唯一性百分比speckleWindowSize=100,  # 过滤小连通区域的窗口大小speckleRange=32      # 连通区域内的差异阈值
)# 计算视差图
disparity_map = sgbm.compute(left_image, right_image)# 将视差图进行归一化处理
disparity_map = cv2.normalize(disparity_map, None, 0, 255, cv2.NORM_MINMAX)# 显示左图、右图和视差图
cv2.imshow('Left Image', left_image)
cv2.imshow('Right Image', right_image)
cv2.imshow('Disparity Map', disparity_map.astype(np.uint8))cv2.waitKey(0)
cv2.destroyAllWindows()

Difference between SGBM and SGM

what is the difference between opencv sgbm and sgm
opencv官方的解释:
The class implements the modified H. Hirschmuller algorithm [82] that differs from the original one as follows:

  1. By default, the algorithm is single-pass, which means that you consider only 5 directions instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the algorithm but beware that it may consume a lot of memory.
  2. The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the blocks to single pixels.
  3. Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi sub-pixel metric from [15] is used. Though, the color images are supported as well.
    Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness check, quadratic interpolation and speckle filtering).

大概的意思就是,与SGM不同之处在于,SGBM算法匹配的时候最小单位是blocks,而不是像素,不过设置blockSize=1的时候,就变成SGM了。没有实现互信息,而是用了更简单的Birchfield-Tomasi sub-pixel metric。除此之外还有一些预处理和后处理操作。
在这里插入图片描述
大概是这样,不知道对不对。

深度的立体匹配算法

先开个坑

这篇关于立体匹配算法(Stereo correspondence)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/695408

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个