Seurat - 聚类教程 (1)

2024-02-09 12:44
文章标签 教程 聚类 seurat

本文主要是介绍Seurat - 聚类教程 (1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

设置 Seurat 对象

本教程[1]中,我们将分析 10X Genomics 免费提供的外周血单核细胞 (PBMC) 数据集。在 Illumina NextSeq 500 上对 2,700 个单细胞进行了测序。可以在此处[2]找到原始数据。

我们首先读取数据。 Read10X() 函数从 10X 读取 cellranger 管道的输出,返回唯一的分子识别 (UMI) 计数矩阵。该矩阵中的值表示在每个细胞(列)中检测到的每个特征(即基因;行)的分子数量。请注意,较新版本的 cellranger 现在也使用 h5 文件格式进行输出,可以使用 Seurat 中的 Read10X_h5() 函数读取该格式。

接下来我们使用计数矩阵来创建 Seurat 对象。该对象充当容器,其中包含单细胞数据集的数据(如计数矩阵)和分析(如 PCA 或聚类结果)。例如,在 Seurat v5 中,计数矩阵存储在 pbmc[["RNA"]]$counts 中。

library(dplyr)
library(Seurat)
library(patchwork)

# Load the PBMC dataset
pbmc.data <- Read10X(data.dir = "/brahms/mollag/practice/filtered_gene_bc_matrices/hg19/")

# Initialize the Seurat object with the raw (non-normalized data).
pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200)

pbmc
  • 输出
## An object of class Seurat 
## 13714 features across 2700 samples within 1 assay 
## Active assay: RNA (13714 features, 0 variable features)
##  1 layer present: counts
  • 示例
# Lets examine a few genes in the first thirty cells
pbmc.data[c("CD3D""TCL1A""MS4A1"), 1:30]

# 输出
## 3 x 30 sparse Matrix of class "dgCMatrix"
##                                                                    
## CD3D  4 . 10 . . 1 2 3 1 . . 2 7 1 . . 1 3 . 2  3 . . . . . 3 4 1 5
## TCL1A . .  . . . . . . 1 . . . . . . . . . . .  . 1 . . . . . . . .
## MS4A1 . 6  . . . . . . 1 1 1 . . . . . . . . . 36 1 2 . . 2 . . . .

矩阵中.的值代表 0(未检测到分子)。由于 scRNA-seq 矩阵中的大多数值都是 0,因此 Seurat 只要有可能就使用稀疏矩阵表示。这会显著节省 Drop-seq/inDrop/10x 数据的内存和速度。

dense.size <- object.size(as.matrix(pbmc.data))
dense.size
## 709591472 bytes

sparse.size <- object.size(pbmc.data)
sparse.size
## 29905192 bytes

dense.size/sparse.size
## 23.7 bytes

预处理

以下步骤涵盖 Seurat 中 scRNA-seq 数据的标准预处理工作流程。这些基于 QC 指标、数据标准化和缩放以及高度可变特征的检测的细胞选择和过滤。

Seurat 允许您轻松探索 QC 指标并根据任何用户定义的标准过滤细胞。常用的一些 QC 指标包括:

  • 每个细胞中检测到的唯一(unique)基因的数量
    • 低质量的细胞或空液滴通常含有很少的基因
    • 细胞双联体或多联体可能表现出异常高的基因计数
  • 同样,细胞内检测到的分子总数(与唯一(unique)基因密切相关)
  • 映射到线粒体基因组的读数百分比
    • 低质量/垂死细胞通常表现出广泛的线粒体污染
    • 我们使用 PercentageFeatureSet() 函数计算线粒体 QC 指标,该函数计算源自一组特征的计数百分比
    • 我们使用以 MT- 开头的所有基因的集合作为线粒体基因的集合
# The [[ operator can add columns to object metadata. This is a great place to stash QC stats
pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")
  • Seurat 中的 QC 指标存储在哪里?

在下面的示例中,我们将 QC 指标可视化,并使用它们来过滤细胞。

我们过滤具有唯一特征计数超过 2,500 或少于 200 的细胞;我们过滤线粒体计数 >5% 的细胞

# Visualize QC metrics as a violin plot
VlnPlot(pbmc, features = c("nFeature_RNA""nCount_RNA""percent.mt"), ncol = 3)
alt
# FeatureScatter is typically used to visualize feature-feature relationships, but can be used
# for anything calculated by the object, i.e. columns in object metadata, PC scores etc.

plot1 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "percent.mt")
plot2 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
plot1 + plot2
alt
pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)

未完待续,持续关注!

Reference
[1]

Source: https://zenghensatijalab.org/seurat/articles/pbmc3k_tutorial

[2]

data: https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz

本文由 mdnice 多平台发布

这篇关于Seurat - 聚类教程 (1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/694269

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

沁恒CH32在MounRiver Studio上环境配置以及使用详细教程

目录 1.  RISC-V简介 2.  CPU架构现状 3.  MounRiver Studio软件下载 4.  MounRiver Studio软件安装 5.  MounRiver Studio软件介绍 6.  创建工程 7.  编译代码 1.  RISC-V简介         RISC就是精简指令集计算机(Reduced Instruction SetCom

前端技术(七)——less 教程

一、less简介 1. less是什么? less是一种动态样式语言,属于css预处理器的范畴,它扩展了CSS语言,增加了变量、Mixin、函数等特性,使CSS 更易维护和扩展LESS 既可以在 客户端 上运行 ,也可以借助Node.js在服务端运行。 less的中文官网:https://lesscss.cn/ 2. less编译工具 koala 官网 http://koala-app.

【Shiro】Shiro 的学习教程(三)之 SpringBoot 集成 Shiro

目录 1、环境准备2、引入 Shiro3、实现认证、退出3.1、使用死数据实现3.2、引入数据库,添加注册功能后端代码前端代码 3.3、MD5、Salt 的认证流程 4.、实现授权4.1、基于角色授权4.2、基于资源授权 5、引入缓存5.1、EhCache 实现缓存5.2、集成 Redis 实现 Shiro 缓存 1、环境准备 新建一个 SpringBoot 工程,引入依赖:

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

Windows环境利用VS2022编译 libvpx 源码教程

libvpx libvpx 是一个开源的视频编码库,由 WebM 项目开发和维护,专门用于 VP8 和 VP9 视频编码格式的编解码处理。它支持高质量的视频压缩,广泛应用于视频会议、在线教育、视频直播服务等多种场景中。libvpx 的特点包括跨平台兼容性、硬件加速支持以及灵活的接口设计,使其可以轻松集成到各种应用程序中。 libvpx 的安装和配置过程相对简单,用户可以从官方网站下载源代码

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密