HMM隐尔马科夫模型

2024-02-09 10:48
文章标签 模型 hmm 科夫 隐尔马

本文主要是介绍HMM隐尔马科夫模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

HMM概念

 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。

举一个经典的例子:一个东京的朋友每天根据天气{下雨,天晴}决定当天的活动{公园散步,购物,清理房间}中的一种,我每天只能在twitter上看到她发的推“啊,我前天公园散步、昨天购物、今天清理房间了!”,那么我可以根据她发的推特推断东京这三天的天气。在这个例子里,显状态是活动,隐状态是天气。

 

以下为一个简单的隐马尔科夫模型,如下图所示:

 

 

马尔科夫假设和马尔科夫链

随机过程中各个状态St的概率分布,只与它的前一个状态St-1有关,即P(St|S1,S2,S3,…,St-1) = P(St|St-1)。

符合马尔可夫假设的随机过程称为马尔可夫过程,也称为马尔可夫链。

在这个马尔可夫链中,四个圈表示四个状态,每条边表示一个可能的状态转换,边上的权值是转移概率。隐含马尔可夫链是上述马尔可夫链的一个扩展:任一时刻t的状态St是不可见的。所以观察者没法通过观察到一个状态序列S1,S2,S3,…,ST来推测转移概率等参数。但是隐含马尔可夫模型在每个时刻t会输出一个符号Ot,而且Ot和St相关且仅和St相关。这称为独立输出假设。隐含马尔可夫模型的结构如下图,其中隐含的状态S1,S2,S3,…是一个典型的马尔可夫链。鲍姆把这种模型称为“隐含”马尔可夫模型。

基本算法

*1 评估问题: 前向算法

*2 解码问题: Viterbi算法

*3 学习问题: Baum-Welch算法(向前向后算法)

 

隐含马尔可夫模型的三个基本问题

1. 评估问题

给定观测序列 O=O1O2O3…Ot和模型参数λ=(A,B,π),怎样有效计算某一观测序列的概率,进而可对该HMM做出相关评估。例如,已有一些模型参数各异的HMM,给定观测序列O=O1O2O3…Ot,我们想知道哪个HMM模型最可能生成该观测序列。通常我们利用forward算法分别计算每个HMM产生给定观测序列O的概率,然后从中选出最优的HMM模型。

这类评估的问题的一个经典例子是语音识别。在描述语言识别的隐马尔科夫模型中,每个单词生成一个对应的HMM,每个观测序列由一个单词的语音构成,单词的识别是通过评估进而选出最有可能产生观测序列所代表的读音的HMM而实现的。

2.解码问题

给定观测序列 O=O1O2O3…Ot 和模型参数λ=(A,B,π),怎样寻找某种意义上最优的隐状态序列。在这类问题中,我们感兴趣的是马尔科夫模型中隐含状态,这些状态不能直接观测但却更具有价值,通常利用Viterbi算法来寻找。

这类问题的一个实际例子是中文分词,即把一个句子如何划分其构成才合适。例如,句子“发展中国家”是划分成“发展-中-国家”,还是“发展-中国-家”。这个问题可以用隐马尔科夫模型来解决。句子的分词方法可以看成是隐含状态,而句子则可以看成是给定的可观测状态,从而通过建HMM来寻找出最可能正确的分词方法。

3. 学习问题。

即HMM的模型参数λ=(A,B,π)未知,如何调整这些参数以使观测序列O=O1O2O3…Ot的概率尽可能的大。通常使用Baum-Welch算法以及Reversed Viterbi算法解决。

怎样调整模型参数λ=(A,B,π),使观测序列 O=O1O2O3…Ot的概率最大?

 

 

隐马尔可夫模型的五元组

隐马尔可夫模型(HMM)可以用五个元素来描述,包括2个状态集合和3个概率矩阵:

1. 隐含状态 S

这些状态之间满足马尔可夫性质,是马尔可夫模型中实际所隐含的状态。这些状态通常无法通过直接观测而得到。(例如S1、S2、S3等等)

2. 可观测状态 O

在模型中与隐含状态相关联,可通过直接观测而得到。(例如O1、O2、O3等等,可观测状态的数目不一定要和隐含状态的数目一致。)

3. 初始状态概率矩阵 π

表示隐含状态在初始时刻t=1的概率矩阵,(例如t=1时,P(S1)=p1、P(S2)=P2、P(S3)=p3,则初始状态概率矩阵 π=[ p1 p2 p3 ].

4. 隐含状态转移概率矩阵 A。

描述了HMM模型中各个状态之间的转移概率。

其中Aij = P( Sj | Si ),1≤i,,j≤N.

表示在 t 时刻、状态为 Si 的条件下,在 t+1 时刻状态是 Sj 的概率。

5. 观测状态转移概率矩阵 B (英文名为Confusion Matrix,直译为混淆矩阵不太易于从字面理解)。

令N代表隐含状态数目,M代表可观测状态数目,则:

Bij = P( Oi | Sj ), 1≤i≤M,1≤j≤N.

表示在 t 时刻、隐含状态是 Sj 条件下,观察状态为 Oi 的概率。

总结:一般的,可以用λ=(A,B,π)三元组来简洁的表示一个隐马尔可夫模型。隐马尔可夫模型实际上是标准马尔可夫模型的扩展,添加了可观测状态集合和这些状态与隐含状态之间的概率关系。

 

 

实例分析:

      A 和B是好朋友,但是他们离得比较远,每天都是通过电话了解对方那天作了什么.B仅仅对三种活动感兴趣:公园散步,购物以及清理房间.他选择做什么事情只凭当天天气.A对于B所住的地方的天气情况并不了解,但是知道总的趋势.在B告诉A每天所做的事情基础上,A想要猜测B所在地的天气情况.
  A认为天气的运行就像一个马尔可夫链. 其有两个状态 “雨”和”晴”,但是无法直接观察它们,也就是说,它们对于A是隐藏的.每天,B有一定的概率进行下列活动:”散步”, “购物”, 或 “清理”. 因为B会告诉A他的活动,所以这些活动就是A的观察数据.这整个系统就是一个隐马尔可夫模型HMM.
  A知道这个地区的总的天气趋势,并且平时知道B会做的事情.也就是说这个隐马尔可夫模型的参数是已知的.下面是概率转移矩阵和两种天气下各种活动的概率:

                     雨天    晴天

          雨天     0.7       0.3

          晴天     0.4       0.6

 

                      散步    购物     清理

          雨天      0.1       0.4       0.5

          晴天      0.6       0.3        0.1

 

下面是一段程序来描述各个变量。

#状态数目,两个状态:雨或晴
states = (‘Rainy’, ‘Sunny’)
#每个状态下可能的观察值
observations = (‘walk’, ‘shop’, ‘clean’)            
#初始状态空间的概率分布
start_probability = {‘Rainy’: 0.6, ‘Sunny’: 0.4}
#与时间无关的状态转移概率矩阵
transition_probability = {
’Rainy’ : {‘Rainy’: 0.7, ‘Sunny’: 0.3},
’Sunny’ : {‘Rainy’: 0.4, ‘Sunny’: 0.6},
}
#给定状态下,观察值概率分布,发射概率
emission_probability = {
’Rainy’ : {‘walk’: 0.1, ‘shop’: 0.4, ‘clean’: 0.5},
’Sunny’ : {‘walk’: 0.6, ‘shop’: 0.3, ‘clean’: 0.1},
}

      在这些代码中,start_probability代表了A对于B第一次给她打电话时的天气情况的不确定性(A知道的只是那个地方平均起来下雨多些).在这里,这个特定的概率分布并非平衡的,平衡概率应该接近(在给定变迁概率的情况下){‘Rainy’: 0.571, ‘Sunny’: 0.429}。 transition_probability 表示马尔可夫链下的天气变迁情况,在这个例子中,如果今天下雨,那么明天天晴的概率只有30%.代码emission_probability 表示了B每天作某件事的概率.如果下雨,有 50% 的概率他在清理房间;如果天晴,则有60%的概率他在外头散步。

 

 

更多内容,还可以参考:https://www.cnblogs.com/skyme/p/4651331.html

 

 

 

 

 

 

 

 

 

 

 

这篇关于HMM隐尔马科夫模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/694008

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU