【实验笔记】Python3+OpenCV读表盘示数

2024-02-08 14:50

本文主要是介绍【实验笔记】Python3+OpenCV读表盘示数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

源码来自于GitHub,https://github.com/intel-iot-devkit/python-cv-samples,源码是Python2,在这里修改为Python3。并做一些分析记录

将GitHub上的项目下载到本地,这里存放在/home/dingzhihui/Downloads目录下,解压,通过PyCharm打开analog_gauge_reader.py文件
首先记录一下运行成功需要修改的部分:
1.读取图片的路径,在这里将图片路径换为绝对路径,便可读取

修改前:

img = cv2.imread('gauge-%s.%s' %(gauge_number, file_type))

修改后:

img = cv2.imread('/home/dingzhihui/Downloads/python-cv-samples-master/examples/analog-gauge-reader/images/gauge-%s.%s' %(gauge_number, file_type))

1.cv2.imread()返回值为NONE

执行pip install --upgrade opencv-python,成功后重新打开python console验证,imread jpg通过,返回的img为正常的MN3数据;至此解决此错误。
修改图片路径:

img = cv2.imread('/usr/apps/python-cv-samples-master/examples/analog-gauge-reader/images/gauge-1.jpg',cv2.IMREAD_UNCHANGED)

2.python3将raw_input和input进行了整合,只有input

gray2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

在这里插入图片描述

在这里插入图片描述

'''  
Copyright (c) 2017 Intel Corporation.
Licensed under the MIT license. See LICENSE file in the project root for full license information.
'''import cv2
import numpy as np
#import paho.mqtt.client as mqtt
import timedef avg_circles(circles, b):avg_x=0avg_y=0avg_r=0for i in range(b):#optional - average for multiple circles (can happen when a gauge is at a slight angle)avg_x = avg_x + circles[0][i][0]avg_y = avg_y + circles[0][i][1]avg_r = avg_r + circles[0][i][2]avg_x = int(avg_x/(b))avg_y = int(avg_y/(b))avg_r = int(avg_r/(b))return avg_x, avg_y, avg_rdef dist_2_pts(x1, y1, x2, y2):#print np.sqrt((x2-x1)^2+(y2-y1)^2)return np.sqrt((x2 - x1)**2 + (y2 - y1)**2)def calibrate_gauge(gauge_number, file_type):'''This function should be run using a test image in order to calibrate the range available to the dial as well as theunits.  It works by first finding the center point and radius of the gauge.  Then it draws lines at hard coded intervals(separation) in degrees.  It then prompts the user to enter position in degrees of the lowest possible value of the gauge,as well as the starting value (which is probably zero in most cases but it won't assume that).  It will then ask for theposition in degrees of the largest possible value of the gauge. Finally, it will ask for the units.  This assumes thatthe gauge is linear (as most probably are).It will return the min value with angle in degrees (as a tuple), the max value with angle in degree45s (as a tuple),and the units (as a string).这个函数用测试图片来校准刻度盘和刻度盘可用的范围单位。需要之前所得的中心点以及半径。然后绘制出刻度。需要输入表盘读数最小角度,最大角度,最小值,最大值,以及单位(min_angle,max_angle,min_value,max_value,units)        '''img = cv2.imread('/home/dingzhihui/Downloads/python-cv-samples-master/examples/analog-gauge-reader/images/gauge-%s.%s' %(gauge_number, file_type))print(img)height, width = img.shape[:2]#将图片转为灰度图片gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  #convert to gray#gray = cv2.GaussianBlur(gray, (5, 5), 0)# gray = cv2.medianBlur(gray, 5)#for testing, output gray image#cv2.imwrite('gauge-%s-bw.%s' %(gauge_number, file_type),gray)#detect circles#restricting the search from 35-48% of the possible radii gives fairly good results across different samples.  Remember that#these are pixel values which correspond to the possible radii search range.#霍夫圆环检测#image:8位,单通道图像#method:定义检测图像中圆的方法。目前唯一实现的方法cv2.HOUGH_GRADIENT。#dp:累加器分辨率与图像分辨率的反比。dp获取越大,累加器数组越小。#minDist:检测到的圆的中心,(x,y)坐标之间的最小距离。如果minDist太小,则可能导致检测到多个相邻的圆。如果minDist太大,则可能导致很多圆检测不到。#param1:用于处理边缘检测的梯度值方法。#param2:cv2.HOUGH_GRADIENT方法的累加器阈值。阈值越小,检测到的圈子越多。#minRadius:半径的最小大小(以像素为单位)。#maxRadius:半径的最大大小(以像素为单位)。circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 20, np.array([]), 100, 50, int(height*0.35), int(height*0.48))# average found circles, found it to be more accurate than trying to tune HoughCircles parameters to get just the right onea, b, c = circles.shape#获取圆的坐标x,y和半径rx,y,r = avg_circles(circles, b)#draw center and circlecv2.circle(img, (x, y), r, (0, 0, 255), 3, cv2.LINE_AA)  # draw circlecv2.circle(img, (x, y), 2, (0, 255, 0), 3, cv2.LINE_AA)  # draw center of circle#for testing, output circles on image#cv2.imwrite('gauge-%s-circles.%s' % (gauge_number, file_type), img)#for calibration, plot lines from center going out at every 10 degrees and add marker#for i from 0 to 36 (every 10 deg)'''goes through the motion of a circle and sets x and y values based on the set separation spacing.  Also adds text to eachline.  These lines and text labels serve as the reference point for the user to enterNOTE: by default this approach sets 0/360 to be the +x axis (if the image has a cartesian grid in the middle), the addition(i+9) in the text offset rotates the labels by 90 degrees so 0/360 is at the bottom (-y in cartesian).  So this assumes thegauge is aligned in the image, but it can be adjusted by changing the value of 9 to something else.根据画出的刻度值,给定x,y的值,并在此位置添加文本信息。这些刻度和文本标签用作用户输入的参考点'''separation = 10.0 #in degreesinterval = int(360 / separation)p1 = np.zeros((interval,2))  #set empty arraysp2 = np.zeros((interval,2))p_text = np.zeros((interval,2))for i in range(0,interval):for j in range(0,2):if (j%2==0):p1[i][j] = x + 0.9 * r * np.cos(separation * i * 3.14 / 180) #point for lineselse:p1[i][j] = y + 0.9 * r * np.sin(separation * i * 3.14 / 180)text_offset_x = 10text_offset_y = 5for i in range(0, interval):for j in range(0, 2):if (j % 2 == 0):p2[i][j] = x + r * np.cos(separation * i * 3.14 / 180)p_text[i][j] = x - text_offset_x + 1.2 * r * np.cos((separation) * (i+9) * 3.14 / 180) #point for text labels, i+9 rotates the labels by 90 degreeselse:p2[i][j] = y + r * np.sin(separation * i * 3.14 / 180)p_text[i][j] = y + text_offset_y + 1.2* r * np.sin((separation) * (i+9) * 3.14 / 180)  # point for text labels, i+9 rotates the labels by 90 degrees#add the lines and labels to the imagefor i in range(0,interval):cv2.line(img, (int(p1[i][0]), int(p1[i][1])), (int(p2[i][0]), int(p2[i][1])),(0, 255, 0), 2)cv2.putText(img, '%s' %(int(i*separation)), (int(p_text[i][0]), int(p_text[i][1])), cv2.FONT_HERSHEY_SIMPLEX, 0.3,(0,0,0),1,cv2.LINE_AA)cv2.imwrite('gauge-%s-calibration.%s' % (gauge_number, file_type), img)#get user input on min, max, values, and unitsprint ('gauge number: %s' %gauge_number)min_angle = input('Min angle (lowest possible angle of dial) - in degrees: ') #the lowest possible anglemax_angle = input('Max angle (highest possible angle) - in degrees: ') #highest possible anglemin_value = input('Min value: ') #usually zeromax_value = input('Max value: ') #maximum reading of the gaugeunits = input('Enter units: ')#for testing purposes: hardcode and comment out raw_inputs above# min_angle = 45# max_angle = 320# min_value = 0# max_value = 200# units = "PSI"return min_angle, max_angle, min_value, max_value, units, x, y, rdef get_current_value(img, min_angle, max_angle, min_value, max_value, x, y, r, gauge_number, file_type):#for testing purposes#img = cv2.imread('gauge-%s.%s' % (gauge_number, file_type))gray2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# Set threshold and maxValuethresh = 175maxValue = 255# for testing purposes, found cv2.THRESH_BINARY_INV to perform the best# th, dst1 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_BINARY);# th, dst2 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_BINARY_INV);# th, dst3 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_TRUNC);# th, dst4 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_TOZERO);# th, dst5 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_TOZERO_INV);# cv2.imwrite('gauge-%s-dst1.%s' % (gauge_number, file_type), dst1)# cv2.imwrite('gauge-%s-dst2.%s' % (gauge_number, file_type), dst2)# cv2.imwrite('gauge-%s-dst3.%s' % (gauge_number, file_type), dst3)# cv2.imwrite('gauge-%s-dst4.%s' % (gauge_number, file_type), dst4)# cv2.imwrite('gauge-%s-dst5.%s' % (gauge_number, file_type), dst5)# apply thresholding which helps for finding linesth, dst2 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_BINARY_INV);# found Hough Lines generally performs better without Canny / blurring, though there were a couple exceptions where it would only work with Canny / blurring#dst2 = cv2.medianBlur(dst2, 5)#dst2 = cv2.Canny(dst2, 50, 150)#dst2 = cv2.GaussianBlur(dst2, (5, 5), 0)# for testing, show image after thresholdingcv2.imwrite('gauge-%s-tempdst2.%s' % (gauge_number, file_type), dst2)# find linesminLineLength = 10maxLineGap = 0lines = cv2.HoughLinesP(image=dst2, rho=3, theta=np.pi / 180, threshold=100,minLineLength=minLineLength, maxLineGap=0)  # rho is set to 3 to detect more lines, easier to get more then filter them out later#for testing purposes, show all found lines# for i in range(0, len(lines)):#   for x1, y1, x2, y2 in lines[i]:#      cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 2)#      cv2.imwrite('gauge-%s-lines-test.%s' %(gauge_number, file_type), img)# remove all lines outside a given radiusprint('lines',lines)final_line_list = []#print "radius: %s" %rdiff1LowerBound = 0.15 #diff1LowerBound and diff1UpperBound determine how close the line should be from the centerdiff1UpperBound = 0.25diff2LowerBound = 0.5 #diff2LowerBound and diff2UpperBound determine how close the other point of the line should be to the outside of the gaugediff2UpperBound = 1.0for i in range(0, len(lines)):for x1, y1, x2, y2 in lines[i]:#print('x1',x1)#print('y1',y1)#print('x2',x2)#print('y2',y2)diff1 = dist_2_pts(x, y, x1, y1)  # x, y is center of circle#print('diff1',diff1)diff2 = dist_2_pts(x, y, x2, y2)  # x, y is center of circle#print('diff2', diff2)#set diff1 to be the smaller (closest to the center) of the two), makes the math easierif (diff1 > diff2):temp = diff1diff1 = diff2diff2 = temp# check if line is within an acceptable range#print('diff1UpperBound*r',diff1UpperBound*r)#print('diff1LowerBound*r', diff1LowerBound*r)#print('diff2UpperBound*r', diff2UpperBound*r)#print('diff2LowerBound*r', diff2LowerBound*r)if (((diff1<diff1UpperBound*r) and (diff1>diff1LowerBound*r) and (diff2<diff2UpperBound*r)) and (diff2>diff2LowerBound*r)):print('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa')print('diff1UpperBound*r',diff1UpperBound*r)print('diff1LowerBound*r', diff1LowerBound*r)print('diff2UpperBound*r', diff2UpperBound*r)print('diff2LowerBound*r', diff2LowerBound*r)print('diff1', diff1)print('diff2', diff2)line_length = dist_2_pts(x1, y1, x2, y2)# add to final listprint([x1, y1, x2, y2])final_line_list.append([x1, y1, x2, y2])#testing only, show all lines after filtering# for i in range(0,len(final_line_list)):#     x1 = final_line_list[i][0]#     y1 = final_line_list[i][1]#     x2 = final_line_list[i][2]#     y2 = final_line_list[i][3]#     cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 2)# assumes the first line is the best oneprint(final_line_list)x1 = final_line_list[0][0]y1 = final_line_list[0][1]x2 = final_line_list[0][2]y2 = final_line_list[0][3]cv2.line(img, (x1, y1), (x2, y2), (0, 255, 0), 2)#for testing purposes, show the line overlayed on the original image#cv2.imwrite('gauge-1-test.jpg', img)cv2.imwrite('gauge-%s-lines-2.%s' % (gauge_number, file_type), img)#find the farthest point from the center to be what is used to determine the angledist_pt_0 = dist_2_pts(x, y, x1, y1)dist_pt_1 = dist_2_pts(x, y, x2, y2)if (dist_pt_0 > dist_pt_1):x_angle = x1 - xy_angle = y - y1else:x_angle = x2 - xy_angle = y - y2# take the arc tan of y/x to find the angleres = np.arctan(np.divide(float(y_angle), float(x_angle)))#np.rad2deg(res) #coverts to degrees# print x_angle# print y_angle# print res# print np.rad2deg(res)#these were determined by trial and errorres = np.rad2deg(res)if x_angle > 0 and y_angle > 0:  #in quadrant Ifinal_angle = 270 - resif x_angle < 0 and y_angle > 0:  #in quadrant IIfinal_angle = 90 - resif x_angle < 0 and y_angle < 0:  #in quadrant IIIfinal_angle = 90 - resif x_angle > 0 and y_angle < 0:  #in quadrant IVfinal_angle = 270 - res#print final_angleold_min = float(min_angle)old_max = float(max_angle)new_min = float(min_value)new_max = float(max_value)old_value = final_angleold_range = (old_max - old_min)new_range = (new_max - new_min)new_value = (((old_value - old_min) * new_range) / old_range) + new_minreturn new_valuedef main():gauge_number = 1file_type='jpg'# name the calibration image of your gauge 'gauge-#.jpg', for example 'gauge-5.jpg'.  It's written this way so you can easily try multiple imagesmin_angle, max_angle, min_value, max_value, units, x, y, r = calibrate_gauge(gauge_number, file_type)print('min_angle=',min_angle)print('max_angle=',max_angle)print('min_value=', min_value)print('max_value=', max_value)print('units=', units)print('x=', x)print('y=', y)print('r=', r)#feed an image (or frame) to get the current value, based on the calibration, by default uses same image as calibrationimg = cv2.imread('/home/dingzhihui/Downloads/python-cv-samples-master/examples/analog-gauge-reader/images/gauge-%s.%s' % (gauge_number, file_type))print()val = get_current_value(img, min_angle, max_angle, min_value, max_value, x, y, r, gauge_number, file_type)print("Current reading: %s %s" %(val, units))if __name__=='__main__':main()

这篇关于【实验笔记】Python3+OpenCV读表盘示数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/691359

相关文章

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Python3中Sanic中间件的使用

《Python3中Sanic中间件的使用》Sanic框架中的中间件是一种强大的工具,本文就来介绍Python3中Sanic中间件的使用,具有一定的参考价值,感兴趣的可以了解一下... 目录Sanic 中间件的工作流程中间件的使用1. 全局中间件2. 路由中间件3. 异常处理中间件4. 异步中间件5. 优先级

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

Python3 BeautifulSoup爬虫 POJ自动提交

POJ 提交代码采用Base64加密方式 import http.cookiejarimport loggingimport urllib.parseimport urllib.requestimport base64from bs4 import BeautifulSoupfrom submitcode import SubmitCodeclass SubmitPoj():de