分布式存储中常见的容错机制:多副本、纠删码(RS、LRC、SHEC)

2024-02-08 12:20

本文主要是介绍分布式存储中常见的容错机制:多副本、纠删码(RS、LRC、SHEC),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 分布式存储中常见的容错机制
    • 浴缸原理
    • 多副本
    • 纠删码
      • RS
      • LRC
      • SHEC
    • 总结


分布式存储中常见的容错机制

浴缸原理

在存储领域中,通常我们会使用浴缸曲线来描述硬盘的故障率,如下图。
在这里插入图片描述

浴缸曲线

故障率随着时间变化,主要分为三个阶段:

  • 早期适配型故障:早期在引入新设备时,会出现系统、软/硬件、驱动等适配型原因的故障。当完成设备适配后,这一类型的故障会急剧下降。
  • 中期偶发型故障:中期设备正常运转时,故障率较低且运行稳定,偶尔可能会因为操作失误、次品设备等原因出现小概率故障。
  • 末期损耗型故障:在设备长期运转后,硬盘由于老化出现各种各样的问题,例如扇区错误/磁盘坏块(HDD)、闪存磨耗/LFT映射表损坏(SSD)等,此时会大规模出现硬件故障。

在分布式存储中,通常采用增加存储节点来扩充系统的容量,这就导致随着系统中的硬盘设备增加,维护的难度越来越大,故障的风险也随之增加,因此需要通过某种容错策略来确保数据安全。


多副本

在传统的分布式存储中,通常会采用多副本的容错策略,常见的用例如 HDFS 中就采用了三副本的策略 。
在这里插入图片描述

多副本

多副本顾名思义,采用了数据冗余的方式,将同样的数据拷贝到存储系统中的 N 个节点上。当某个节点的数据丢失时,只要系统中还有任意一个存活的副本,就可以将数据恢复。

其实现简单,数据恢复速度快,可靠性高(只要有一个副本存活,数据就不会丢失)。但也因此导致了严重的空间浪费,因此通常在存储小文件、热点文件时,才会使用多副本。


纠删码

纠删码(Erasure Code)是一种用于纠正数据丢失的校验编码。如下图,通常我们会讲输入数据拆分为多个数据块,再根据某种算法在数据块的基础上编码出校验块。当出现数据块丢失时,可以通过剩余的数据块和校验块进行解码,将丢失数据恢复回来。
http://img.orekilee.top//imgbed/store/store4.png

纠删码

由于编码、解码的计算流程复杂,开销过大,所以通常只有大文件和冷数据才会使用纠错码进行容错。


RS

RS(Reed-Solomon)是当前最为主流的纠删码算法,例如 Google GFS、Facebook HDFS、Dell EMC ECS、CEPH 就采用了这种算法。

由于 RS 算法应用较广,有许多比较出名的开源实现如:

  • Jerasure
  • ISA-L

RS 算法的核心思路在于将原始数据分为 K 份大小相同的数据块,并根据这些数据块计算出 M 份大小相同的校验块。 将所有的数据块和校验块分别存储在不同的节点中,当有任意块丢失时,只要保证有任意 K 块存在,则可以将数据计算恢复。

  • 编码流程
    在这里插入图片描述
    RS 编码流程

以 RS(5,3) 为例。如上图,首先会生成一个 n * (n + m) 大小的编码矩阵。矩阵有两部分组成,上半部分是一个 n * n 的单位矩阵,下半部份是一个 m * n 大小的校验矩阵(通常使用范德蒙矩阵或柯西矩阵)。通过将数据块和编码矩阵相乘,即得到一个 (n + m) * 1 的结果矩阵。其中数据块不变,生成 m 个校验块。

下面以范德蒙矩阵为例,这里简单描述一下解码流程,不涉及矩阵计算和代数原理。(感兴趣的可以研究下线性代数)

  • 解码流程

在这里插入图片描述

RS 解码流程1

以之前的数据距离,假设同时丢失了 m 个块——D1、D4、C2。
在这里插入图片描述
RS 解码流程2

此时需要从编码矩阵中删除掉丢失块对应的行,生成新的编码矩阵与结果矩阵。
在这里插入图片描述
RS 解码流程3

紧接着计算出编码矩阵的逆矩阵。
在这里插入图片描述

RS 解码流程4

同时对等式两边乘以逆矩阵。

在这里插入图片描述

RS 解码流程5

编码矩阵与逆矩阵相乘后得到单位矩阵。
在这里插入图片描述

RS 解码流程6

经过化简,此时得到原始数据 D,完成数据恢复。从上面的编解码流程可以看出,若要保证数据恢复,至多可丢失 M 个块(即删除 M 列不会影响矩阵计算)。


LRC

RS 虽然带来了大量的空间节省,但数据恢复的开销也急剧增大。当单数据块出现故障时,需要从 N 个节点上读取数据进行计算恢复。为了进一步降低恢复开销,Microsoft Azure 牺牲了部分空间,在 RS 的基础上封装出新的纠错算法 LRC(Locally Repairable Codes)。

LRC 算法的核心思路是将校验块拆分为全局校验块和局部校验块。 根据 K 个数据块计算出 M 个全局校验块,再将数据块平均分为 L 组,每组计算出一个局部数据块。

具体的原理这里不进行介绍,如果感兴趣可以去看看论文 Locally Repairable Codes

根据块类型的不同,数据恢复的开销也不一样:

  • 数据块
    • 单数据块丢失时,需要同组其他数据块和局部校验块进行恢复。
    • 多数据块丢失时
      • 同组:如果丢失的是同组的数据块,则需要根据所有剩余的数据块和全局校验块进行恢复。
      • 不同组:假设丢失的 N 个数据块处于不同组,则与单数据块流程一样,每组分别进行恢复。
  • 全局校验块:需要根据所有的数据块进行恢复。
  • 局部校验块:局部校验块丢失时,需要读取对应组的所有数据块进行恢复。

根据丢失的块类型,容错如下:

  • 允许所有的校验块同时丢失。
  • 允许 M 个块同时丢失。


SHEC

与 LRC 不同,CEPH 团队选择通过牺牲部分可靠性,近一步提高空间利用率,在 LRC 的基础上再次封装出新的纠错算法 SHEC(Shingled Erasure Code)。

SHEC 算法的核心思路是利用类似于滑动窗口的机制,每个校验块不仅包含对应数据块的信息,还包含上一个校验块的部分信息,因此某个校验块丢失时,也可以通过其他校验块进行恢复。 根据 K 个数据块,生成 M 个校验块,每个校验块中包含 C 个数据块。

具体的原理这里不进行介绍,如果感兴趣可以去看看论文 Erasure Code with Shingled Local Parity Groups for Efficient Recovery from Multiple Disk Failures

在这里插入图片描述

SHEC 算法图例

以上图 SHEC(10,6,3) 为例,即有 10 个数据块,6个滑动窗口,每个滑动窗口长度为 5。假设 D1 丢失时,我们可以通过读取 D2 ~ D5、P1 来进行数据恢复。而当 D6 和 D9 丢失时,可以通过读取同时包含这两个数据块的 P3、P4 校验块,以及 D5、D7、D8、D10 数据块,即可将数据恢复。

因此当一个数据块丢失时,仅需要读取 C 个数据块即可将数据恢复,并且同时支持丢失 (M * C) / K 个数据块丢。


总结

算法多副本RS(K,M)LRC(K,M,L)SHEC(K,M,C)
恢复开销(单数据块)1KLC
空间开销N(K + M) / K(K + M + M / L ) / KK + M
容错上限N - 1MMM * C / K
适用场景小文件、热点文件大文件、冷数据
  • 应用场景
    • 多副本保证了高可靠性以及低恢复开销,牺牲了空间。因此通常适用于高频访问的热点文件和小文件。
    • 纠错码降低了空间开销,但是带来了容错损耗和编解码开销。因此通常适用于大文件及冷数据。
  • 对比
    • 空间利用率:RS > SHEC > LRC > 多副本
    • 恢复速度:多副本 > LRC ≈ SHEC > RS
    • 可靠性:多副本 > RS ≈ LRC > SHEC

这篇关于分布式存储中常见的容错机制:多副本、纠删码(RS、LRC、SHEC)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/691018

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

集中式版本控制与分布式版本控制——Git 学习笔记01

什么是版本控制 如果你用 Microsoft Word 写过东西,那你八成会有这样的经历: 想删除一段文字,又怕将来这段文字有用,怎么办呢?有一个办法,先把当前文件“另存为”一个文件,然后继续改,改到某个程度,再“另存为”一个文件。就这样改着、存着……最后你的 Word 文档变成了这样: 过了几天,你想找回被删除的文字,但是已经记不清保存在哪个文件了,只能挨个去找。真麻烦,眼睛都花了。看

速了解MySQL 数据库不同存储引擎

快速了解MySQL 数据库不同存储引擎 MySQL 提供了多种存储引擎,每种存储引擎都有其特定的特性和适用场景。了解这些存储引擎的特性,有助于在设计数据库时做出合理的选择。以下是 MySQL 中几种常用存储引擎的详细介绍。 1. InnoDB 特点: 事务支持:InnoDB 是一个支持 ACID(原子性、一致性、隔离性、持久性)事务的存储引擎。行级锁:使用行级锁来提高并发性,减少锁竞争

【Tools】大模型中的注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 在大模型中,注意力机制是一种重要的技术,它被广泛应用于自然语言处理领域,特别是在机器翻译和语言模型中。 注意力机制的基本思想是通过计算输入序列中各个位置的权重,以确