听课笔记--Python数据分析--Numpy基础及基本应用

2024-02-08 04:32

本文主要是介绍听课笔记--Python数据分析--Numpy基础及基本应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

'''
@Author: Liang
@LastEditors: Liang
@Date: 2020-07-26 19:16:40
@LastEditTime: 2020-07-28 20:26:31
@Email: str-liang@outlook.com
@FilePath: /undefinede:/Python数据分析/Numpy基础及基本应用.py
@Environment: Win 10 Python 3.8
@Description: Numpy基础及基本应用 
'''# 一维二维三维数组""" 
数据收集:
爬虫
公开数据(披露数据-如财报等)
其他途径的数据
"""""" 
数据预处理的方法:
1、归一化
2、二值化
3、维度变换
4、去重
5、无效数据过滤
"""""" 数据-处理的方法:1、数据排序2、数据查找3、数据统计分析
"""# 为什么要用Numpy?
# 高性能、开源、数组运算、读写迅速import numpy as np
import time# 如果抽象成这样:aeb
# 要求a不能不写,也就是说是1也要写上
# b必须是整数.
# 实现上就是 a*10^b
# a乘以10的b次方
# 所以楼主的就是1*10^6 也就是一百万的数据量""" 
list_array = list(range(int(1e6))) 
start_time = time.time()
python_array = [val * 5 for val in list_array]
end_time = time.time()
print('Python array time:{} ms(毫秒)'.format(round((end_time - start_time)*1000,2)))
# 约为 80 msnp_array = np.arange(1e6)
start_time = time.time()
np_array = np_array * 5
end_time = time.time()
print('Numpy array time:{} ms(毫秒)'.format(round((end_time - start_time)*1000,2)))
# 约为 4 ms
# 将近20倍速度的差
print('What sup!')"""# data = [1,2,3] # Python 直接创建数组
# data = np.array([1,2,3]) # Numpy 创建数组# data = np.array([[1,2,3],[4,5,6]]) # 二维数组需要两层中括号,请留意
# 或者这么写,看的更加直观"""
data = np.array([[1,2,3],[4,5,6]]) # 二维数组需要两层中括号,请留意"""# data = np.array([[1,2,3],[4,5,6]])
# print(data.ndim) #  2  判断是几位数组
# print(data.shape) # (2,3)  获取每个维度上面的数量 # data = np.zeros(10)
# print(data) # [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 创建 10 个 0的数组# data = np.ones(10)
# print(data) # [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] 创建 10 个 1的数组""" 
data = np.ones((3,10))
print(data) 
创建一个 三行十列 且都是1的二维数组 [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.][1. 1. 1. 1. 1. 1. 1. 1. 1. 1.][1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]"""""" data = np.arange(10)
print(data) # [0 1 2 3 4 5 6 7 8 9] 从 0到9
print(data[5]) # 获取索引(下标)为5的值"""""" data = np.array([[1,2,3],[4,5,6]])
print(data[0]) #[1,2,3] 代表第0行
print(data[1]) #[4,5,6] 代表第1行
print(data[0][0]) #[1] 代表第0行 第0列
print(data[1][2]) #[6] 代表第1行 第2列
print(data[1,2]) # 这个和上面的表述方法一致,都是 [6] 代表第1行 第2列"""""" 
data = np.arange(10)
print(data[:2]) # [0,1] 代表第前面两个 下标(索引) 从0开始(包含) 到 2(不包含) 的元素
print(data[1:2]) # [1] 代表下标(索引) 从1开始(包含) 到 2(不包含) 的元素
print(data[1:]) # [1 2 3 4 5 6 7 8 9]  代表从1(包含)开始到最后
print(data[:]) # [0 1 2 3 4 5 6 7 8 9] 所有"""# 注意!切片得到的数据对应的还是原始数据任何修改都会反映到原始数据上
# 注意!切片得到的数据对应的还是原始数据任何修改都会反映到原始数据上
# 注意!切片得到的数据对应的还是原始数据任何修改都会反映到原始数据上"""
data = np.arange(10)
print(data)
data_slice = data[0:1]
data_slice[0] = 100
print(data)
print(data_slice)
# [100   1   2   3   4   5   6   7   8   9]  源数据会被修改 如果不想被修改 可以 使用 data_slice = data[0:1].copy() 
"""""" 
data = np.arange(10)
# 变换数组的维度,如果维度无法进行变换  如 2,3 则报错 cannot reshape array of size 10 into shape (2,3)
print(data.reshape(5,2))
print(data.reshape(2,5))
print(data.reshape(2,3))"""""" 
data = np.arange(10)
print(data.reshape(2,5).T) 
#  .T 转置操作
[[0 5][1 6][2 7][3 8][4 9]]"""""" 
data = np.arange(3)
print(np.sqrt(data))
# 求平方根 [0.         1.         1.41421356]"""""" 函数	说明
abs	计算绝对值
sgrt	计算平方根
square	计算平方
exp	计算指数ex
sign	计算正负号:1、0、-1
ceil	计算大于等于该元素的最小整数
floor	计算小于等于该元素的最大整数
isnan	计算哪些元素是非数字"""""" 
data = np.array([1,2,3])
data1 = np.array([11,22,33])
print(np.add(data, data1))
# Numpy 的加法运算 """""" 
常见的数组可用方法函数	说明
add	计算两个数组的和
subtract	从第一个数组减去第二个数组
multiply	计算两个数组元素的乘积(不是矩阵乘法)
divide	第一个数组元素除以第二个数组元素
power	第一个数组元素A,第二个数组元素B,计算Ab
fmax	计算两个元素各个位置上更大的那个
fmin	计算两个元素各个位置上更小的那个
"""""" 
data = np.array([1,2,3])
data1 = np.array([3,6,9])
print(np.multiply(data, data1))
# [ 3 12 27]  multiply	计算两个数组元素的乘积(不是矩阵乘法)   和刚刚的 add 加法是一样的,是对应下标的元素进行相乘
"""""" 
data = np.arange(10)
print(np.sum(data)) # 对数组内所有元素求和"""""" 
一些常用的统计方法
函数	说明
sum	计算数组所有元素的和
mean	计算数组所有元素的平均值
std	计算数组所有元素的标准差
min,max	计算数组所有元素的最小或者最大值
argmin,argmax	计算数组所有元素的最小或者最大值对应的位置"""""" 
# 数组的排序 第一种 ==> 不会修改 data 源数据
data = np.array([5,8,6,3,8,10,1])
print(np.sort(data))
print(data)
# [ 1  3  5  6  8  8 10] 数组的排序# 数组的排序 第一种 ==> 修改 data 源数据
data = np.array([5,8,6,3,8,10,1])
data.sort()
print(data)"""data = np.genfromtxt('C:/Users/Desktop/data.txt',delimiter=',') # delimiter 代表指定的分隔符是什么
print(data)
# 如果不是数字 显示 nan

 

这篇关于听课笔记--Python数据分析--Numpy基础及基本应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/689903

相关文章

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文