听课笔记--Python数据分析--Numpy基础及基本应用

2024-02-08 04:32

本文主要是介绍听课笔记--Python数据分析--Numpy基础及基本应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

'''
@Author: Liang
@LastEditors: Liang
@Date: 2020-07-26 19:16:40
@LastEditTime: 2020-07-28 20:26:31
@Email: str-liang@outlook.com
@FilePath: /undefinede:/Python数据分析/Numpy基础及基本应用.py
@Environment: Win 10 Python 3.8
@Description: Numpy基础及基本应用 
'''# 一维二维三维数组""" 
数据收集:
爬虫
公开数据(披露数据-如财报等)
其他途径的数据
"""""" 
数据预处理的方法:
1、归一化
2、二值化
3、维度变换
4、去重
5、无效数据过滤
"""""" 数据-处理的方法:1、数据排序2、数据查找3、数据统计分析
"""# 为什么要用Numpy?
# 高性能、开源、数组运算、读写迅速import numpy as np
import time# 如果抽象成这样:aeb
# 要求a不能不写,也就是说是1也要写上
# b必须是整数.
# 实现上就是 a*10^b
# a乘以10的b次方
# 所以楼主的就是1*10^6 也就是一百万的数据量""" 
list_array = list(range(int(1e6))) 
start_time = time.time()
python_array = [val * 5 for val in list_array]
end_time = time.time()
print('Python array time:{} ms(毫秒)'.format(round((end_time - start_time)*1000,2)))
# 约为 80 msnp_array = np.arange(1e6)
start_time = time.time()
np_array = np_array * 5
end_time = time.time()
print('Numpy array time:{} ms(毫秒)'.format(round((end_time - start_time)*1000,2)))
# 约为 4 ms
# 将近20倍速度的差
print('What sup!')"""# data = [1,2,3] # Python 直接创建数组
# data = np.array([1,2,3]) # Numpy 创建数组# data = np.array([[1,2,3],[4,5,6]]) # 二维数组需要两层中括号,请留意
# 或者这么写,看的更加直观"""
data = np.array([[1,2,3],[4,5,6]]) # 二维数组需要两层中括号,请留意"""# data = np.array([[1,2,3],[4,5,6]])
# print(data.ndim) #  2  判断是几位数组
# print(data.shape) # (2,3)  获取每个维度上面的数量 # data = np.zeros(10)
# print(data) # [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 创建 10 个 0的数组# data = np.ones(10)
# print(data) # [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] 创建 10 个 1的数组""" 
data = np.ones((3,10))
print(data) 
创建一个 三行十列 且都是1的二维数组 [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.][1. 1. 1. 1. 1. 1. 1. 1. 1. 1.][1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]"""""" data = np.arange(10)
print(data) # [0 1 2 3 4 5 6 7 8 9] 从 0到9
print(data[5]) # 获取索引(下标)为5的值"""""" data = np.array([[1,2,3],[4,5,6]])
print(data[0]) #[1,2,3] 代表第0行
print(data[1]) #[4,5,6] 代表第1行
print(data[0][0]) #[1] 代表第0行 第0列
print(data[1][2]) #[6] 代表第1行 第2列
print(data[1,2]) # 这个和上面的表述方法一致,都是 [6] 代表第1行 第2列"""""" 
data = np.arange(10)
print(data[:2]) # [0,1] 代表第前面两个 下标(索引) 从0开始(包含) 到 2(不包含) 的元素
print(data[1:2]) # [1] 代表下标(索引) 从1开始(包含) 到 2(不包含) 的元素
print(data[1:]) # [1 2 3 4 5 6 7 8 9]  代表从1(包含)开始到最后
print(data[:]) # [0 1 2 3 4 5 6 7 8 9] 所有"""# 注意!切片得到的数据对应的还是原始数据任何修改都会反映到原始数据上
# 注意!切片得到的数据对应的还是原始数据任何修改都会反映到原始数据上
# 注意!切片得到的数据对应的还是原始数据任何修改都会反映到原始数据上"""
data = np.arange(10)
print(data)
data_slice = data[0:1]
data_slice[0] = 100
print(data)
print(data_slice)
# [100   1   2   3   4   5   6   7   8   9]  源数据会被修改 如果不想被修改 可以 使用 data_slice = data[0:1].copy() 
"""""" 
data = np.arange(10)
# 变换数组的维度,如果维度无法进行变换  如 2,3 则报错 cannot reshape array of size 10 into shape (2,3)
print(data.reshape(5,2))
print(data.reshape(2,5))
print(data.reshape(2,3))"""""" 
data = np.arange(10)
print(data.reshape(2,5).T) 
#  .T 转置操作
[[0 5][1 6][2 7][3 8][4 9]]"""""" 
data = np.arange(3)
print(np.sqrt(data))
# 求平方根 [0.         1.         1.41421356]"""""" 函数	说明
abs	计算绝对值
sgrt	计算平方根
square	计算平方
exp	计算指数ex
sign	计算正负号:1、0、-1
ceil	计算大于等于该元素的最小整数
floor	计算小于等于该元素的最大整数
isnan	计算哪些元素是非数字"""""" 
data = np.array([1,2,3])
data1 = np.array([11,22,33])
print(np.add(data, data1))
# Numpy 的加法运算 """""" 
常见的数组可用方法函数	说明
add	计算两个数组的和
subtract	从第一个数组减去第二个数组
multiply	计算两个数组元素的乘积(不是矩阵乘法)
divide	第一个数组元素除以第二个数组元素
power	第一个数组元素A,第二个数组元素B,计算Ab
fmax	计算两个元素各个位置上更大的那个
fmin	计算两个元素各个位置上更小的那个
"""""" 
data = np.array([1,2,3])
data1 = np.array([3,6,9])
print(np.multiply(data, data1))
# [ 3 12 27]  multiply	计算两个数组元素的乘积(不是矩阵乘法)   和刚刚的 add 加法是一样的,是对应下标的元素进行相乘
"""""" 
data = np.arange(10)
print(np.sum(data)) # 对数组内所有元素求和"""""" 
一些常用的统计方法
函数	说明
sum	计算数组所有元素的和
mean	计算数组所有元素的平均值
std	计算数组所有元素的标准差
min,max	计算数组所有元素的最小或者最大值
argmin,argmax	计算数组所有元素的最小或者最大值对应的位置"""""" 
# 数组的排序 第一种 ==> 不会修改 data 源数据
data = np.array([5,8,6,3,8,10,1])
print(np.sort(data))
print(data)
# [ 1  3  5  6  8  8 10] 数组的排序# 数组的排序 第一种 ==> 修改 data 源数据
data = np.array([5,8,6,3,8,10,1])
data.sort()
print(data)"""data = np.genfromtxt('C:/Users/Desktop/data.txt',delimiter=',') # delimiter 代表指定的分隔符是什么
print(data)
# 如果不是数字 显示 nan

 

这篇关于听课笔记--Python数据分析--Numpy基础及基本应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/689903

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

基本知识点

1、c++的输入加上ios::sync_with_stdio(false);  等价于 c的输入,读取速度会加快(但是在字符串的题里面和容易出现问题) 2、lower_bound()和upper_bound() iterator lower_bound( const key_type &key ): 返回一个迭代器,指向键值>= key的第一个元素。 iterator upper_bou

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、