听课笔记--Python数据分析--Numpy基础及基本应用

2024-02-08 04:32

本文主要是介绍听课笔记--Python数据分析--Numpy基础及基本应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

'''
@Author: Liang
@LastEditors: Liang
@Date: 2020-07-26 19:16:40
@LastEditTime: 2020-07-28 20:26:31
@Email: str-liang@outlook.com
@FilePath: /undefinede:/Python数据分析/Numpy基础及基本应用.py
@Environment: Win 10 Python 3.8
@Description: Numpy基础及基本应用 
'''# 一维二维三维数组""" 
数据收集:
爬虫
公开数据(披露数据-如财报等)
其他途径的数据
"""""" 
数据预处理的方法:
1、归一化
2、二值化
3、维度变换
4、去重
5、无效数据过滤
"""""" 数据-处理的方法:1、数据排序2、数据查找3、数据统计分析
"""# 为什么要用Numpy?
# 高性能、开源、数组运算、读写迅速import numpy as np
import time# 如果抽象成这样:aeb
# 要求a不能不写,也就是说是1也要写上
# b必须是整数.
# 实现上就是 a*10^b
# a乘以10的b次方
# 所以楼主的就是1*10^6 也就是一百万的数据量""" 
list_array = list(range(int(1e6))) 
start_time = time.time()
python_array = [val * 5 for val in list_array]
end_time = time.time()
print('Python array time:{} ms(毫秒)'.format(round((end_time - start_time)*1000,2)))
# 约为 80 msnp_array = np.arange(1e6)
start_time = time.time()
np_array = np_array * 5
end_time = time.time()
print('Numpy array time:{} ms(毫秒)'.format(round((end_time - start_time)*1000,2)))
# 约为 4 ms
# 将近20倍速度的差
print('What sup!')"""# data = [1,2,3] # Python 直接创建数组
# data = np.array([1,2,3]) # Numpy 创建数组# data = np.array([[1,2,3],[4,5,6]]) # 二维数组需要两层中括号,请留意
# 或者这么写,看的更加直观"""
data = np.array([[1,2,3],[4,5,6]]) # 二维数组需要两层中括号,请留意"""# data = np.array([[1,2,3],[4,5,6]])
# print(data.ndim) #  2  判断是几位数组
# print(data.shape) # (2,3)  获取每个维度上面的数量 # data = np.zeros(10)
# print(data) # [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 创建 10 个 0的数组# data = np.ones(10)
# print(data) # [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] 创建 10 个 1的数组""" 
data = np.ones((3,10))
print(data) 
创建一个 三行十列 且都是1的二维数组 [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.][1. 1. 1. 1. 1. 1. 1. 1. 1. 1.][1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]"""""" data = np.arange(10)
print(data) # [0 1 2 3 4 5 6 7 8 9] 从 0到9
print(data[5]) # 获取索引(下标)为5的值"""""" data = np.array([[1,2,3],[4,5,6]])
print(data[0]) #[1,2,3] 代表第0行
print(data[1]) #[4,5,6] 代表第1行
print(data[0][0]) #[1] 代表第0行 第0列
print(data[1][2]) #[6] 代表第1行 第2列
print(data[1,2]) # 这个和上面的表述方法一致,都是 [6] 代表第1行 第2列"""""" 
data = np.arange(10)
print(data[:2]) # [0,1] 代表第前面两个 下标(索引) 从0开始(包含) 到 2(不包含) 的元素
print(data[1:2]) # [1] 代表下标(索引) 从1开始(包含) 到 2(不包含) 的元素
print(data[1:]) # [1 2 3 4 5 6 7 8 9]  代表从1(包含)开始到最后
print(data[:]) # [0 1 2 3 4 5 6 7 8 9] 所有"""# 注意!切片得到的数据对应的还是原始数据任何修改都会反映到原始数据上
# 注意!切片得到的数据对应的还是原始数据任何修改都会反映到原始数据上
# 注意!切片得到的数据对应的还是原始数据任何修改都会反映到原始数据上"""
data = np.arange(10)
print(data)
data_slice = data[0:1]
data_slice[0] = 100
print(data)
print(data_slice)
# [100   1   2   3   4   5   6   7   8   9]  源数据会被修改 如果不想被修改 可以 使用 data_slice = data[0:1].copy() 
"""""" 
data = np.arange(10)
# 变换数组的维度,如果维度无法进行变换  如 2,3 则报错 cannot reshape array of size 10 into shape (2,3)
print(data.reshape(5,2))
print(data.reshape(2,5))
print(data.reshape(2,3))"""""" 
data = np.arange(10)
print(data.reshape(2,5).T) 
#  .T 转置操作
[[0 5][1 6][2 7][3 8][4 9]]"""""" 
data = np.arange(3)
print(np.sqrt(data))
# 求平方根 [0.         1.         1.41421356]"""""" 函数	说明
abs	计算绝对值
sgrt	计算平方根
square	计算平方
exp	计算指数ex
sign	计算正负号:1、0、-1
ceil	计算大于等于该元素的最小整数
floor	计算小于等于该元素的最大整数
isnan	计算哪些元素是非数字"""""" 
data = np.array([1,2,3])
data1 = np.array([11,22,33])
print(np.add(data, data1))
# Numpy 的加法运算 """""" 
常见的数组可用方法函数	说明
add	计算两个数组的和
subtract	从第一个数组减去第二个数组
multiply	计算两个数组元素的乘积(不是矩阵乘法)
divide	第一个数组元素除以第二个数组元素
power	第一个数组元素A,第二个数组元素B,计算Ab
fmax	计算两个元素各个位置上更大的那个
fmin	计算两个元素各个位置上更小的那个
"""""" 
data = np.array([1,2,3])
data1 = np.array([3,6,9])
print(np.multiply(data, data1))
# [ 3 12 27]  multiply	计算两个数组元素的乘积(不是矩阵乘法)   和刚刚的 add 加法是一样的,是对应下标的元素进行相乘
"""""" 
data = np.arange(10)
print(np.sum(data)) # 对数组内所有元素求和"""""" 
一些常用的统计方法
函数	说明
sum	计算数组所有元素的和
mean	计算数组所有元素的平均值
std	计算数组所有元素的标准差
min,max	计算数组所有元素的最小或者最大值
argmin,argmax	计算数组所有元素的最小或者最大值对应的位置"""""" 
# 数组的排序 第一种 ==> 不会修改 data 源数据
data = np.array([5,8,6,3,8,10,1])
print(np.sort(data))
print(data)
# [ 1  3  5  6  8  8 10] 数组的排序# 数组的排序 第一种 ==> 修改 data 源数据
data = np.array([5,8,6,3,8,10,1])
data.sort()
print(data)"""data = np.genfromtxt('C:/Users/Desktop/data.txt',delimiter=',') # delimiter 代表指定的分隔符是什么
print(data)
# 如果不是数字 显示 nan

 

这篇关于听课笔记--Python数据分析--Numpy基础及基本应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/689903

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.