本文主要是介绍python networkx 画关系网络图并计算中心点指标(导入CSV,txt数据;导出数据excel),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
利用networkx计算社会网络中的各指标,包括中介中心度,邻近中心度、和度中心度。代码都是参考附录中的参考链接,经过修改之后包含数据的导入、建网络、画图、计算中心性指标,并且讲计算的中心性指标数据导出到excel表中。复杂的代码基本删除了,就不一一介绍了,直接附代码。
一、数据准备
节点表导入了csv文件(node test.csv)
边表导入了txt文件(2007 edge.txt)
二、导入csv、txt文件
代码如下:
import csvwith open('node test.csv','rt') as csvfile:reader = csv.DictReader(csvfile)column = [row['id'] for row in reader]
print (column)edge = []
with open('2007 edge.txt','r') as f: data = f.readlines() for line in data:#print (line)line = tuple(line.replace('\r','').replace('\n','').replace('\t','').split(','))edge.append(line)
print (edge)
三、画网络图
代码如下:
import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph()
G.add_nodes_from(column)
G.add_weighted_edges_from(edge)nx.draw_networkx(G,pos=nx.spring_layout(G),node_size=20,node_shape='o',width=1,style='solid',font_size=8) plt.show()
#print ( G.nodes())
四、计算中心度
代码如下:
###计算统计指标#计算中介中心度
print("Betweenness centrality")
b = nx.betweenness_centrality(G)
for v in G.nodes():#print("%s %0.6r" % (v, b[v])) # %s字符串,%0.6r浮点数子6位print(v, b[v])
#计算度中心度
print("Degree centrality")
d = nx.degree_centrality(G)
for v in G.nodes():print(v, d[v])
#计算紧密中心度
print("Closeness centrality")
c = nx.closeness_centrality(G)
for v in G.nodes():print(v, c[v])
五、中心度指标导出到Excel表中
代码如下:
import xlwt##导出到excel表格中#创建Workbook,相当于创建Excel
xls = xlwt.Workbook(encoding='utf-8')
#创建sheet,Sheet1为表的名字,cell_overwrite_ok为是否覆盖单元格
sheet = xls.add_sheet('sheet1', cell_overwrite_ok=True)
# 创建的文件夹,用来写入处理后的数据file = "D:\data\python\py2021815\data2017.xls"#向表中添加数据
sheet.write(0, 0,'id')
sheet.write(0, 1, "Betweenness centrality")
sheet.write(0, 2, "Degree centrality")
sheet.write(0, 3, "Closeness centrality")
m = 1
for v in G.nodes():sheet.write(m,0,v)sheet.write(m, 1, b[v])sheet.write(m, 2, d[v])sheet.write(m, 3, c[v])m = m + 1
# 保存到excel中
xls.save(file)
注意:文件保存路径和表格命名都不要使用数字开头。
六.完整代码
代码如下:
import networkx as nx
import matplotlib.pyplot as plt
import csv
import xlwtwith open('node test.csv','rt') as csvfile:reader = csv.DictReader(csvfile)column = [row['id'] for row in reader]
#print (column)edge = []
with open('2007 edge.txt','r') as f: data = f.readlines() for line in data:#print (line)line = tuple(line.replace('\r','').replace('\n','').replace('\t','').split(','))edge.append(line)
#print (edge)G = nx.DiGraph()
G.add_nodes_from(column)
G.add_weighted_edges_from(edge)nx.draw_networkx(G,pos=nx.spring_layout(G),node_size=20,node_shape='o',width=1,style='solid',font_size=8) plt.show()
#print ( G.nodes())###计算统计指标#计算中介中心度
print("Betweenness centrality")
b = nx.betweenness_centrality(G)
for v in G.nodes():#print("%s %0.6r" % (v, b[v])) # %s字符串,%0.6r浮点数子6位print(v, b[v])
#计算度中心度
print("Degree centrality")
d = nx.degree_centrality(G)
for v in G.nodes():print(v, d[v])
#计算紧密中心度
print("Closeness centrality")
c = nx.closeness_centrality(G)
for v in G.nodes():print(v, c[v])##导出到excel表格中#创建Workbook,相当于创建Excel
xls = xlwt.Workbook(encoding='utf-8')
#创建sheet,Sheet1为表的名字,cell_overwrite_ok为是否覆盖单元格
sheet = xls.add_sheet('sheet1', cell_overwrite_ok=True)
# 创建的文件夹,用来写入处理后的数据file = "D:\data\python\py2021815\data2017.xls"#向表中添加数据
sheet.write(0, 0,'id')
sheet.write(0, 1, "Betweenness centrality")
sheet.write(0, 2, "Degree centrality")
sheet.write(0, 3, "Closeness centrality")
m = 1
for v in G.nodes():sheet.write(m,0,v)sheet.write(m, 1, b[v])sheet.write(m, 2, d[v])sheet.write(m, 3, c[v])m = m + 1
# 保存到excel中
xls.save(file)
参考链接
Python读取csv的常用方法
【Python】Matplotlib画图(十)——基于networkx画关系网络图
用Python处理txt数据或计算数据将其转存为excel文件
总结
终于搭完了框架,后面要计算改进指标可以方便很多了,但是使用matplotlib画图不好看(具体调节网络图我还没有学…,之前吐槽Gephi不好看,但至少能连接地图,Gephi导出图折磨了我一周,为了能计算改进的指标,安装Neo4j把java给卸载了,现在也不知道还能不能再画图了。)。
这篇关于python networkx 画关系网络图并计算中心点指标(导入CSV,txt数据;导出数据excel)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!