政安晨:示例演绎TensorFlow的官方指南(二){Estimator}

2024-02-07 21:20

本文主要是介绍政安晨:示例演绎TensorFlow的官方指南(二){Estimator},希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

咱们接着演绎TensorFlow官方指南,我的这个系列的上一篇文章为:

政安晨:示例演绎TensorFlow的官方指南(一){基础知识}icon-default.png?t=N7T8https://blog.csdn.net/snowdenkeke/article/details/136067030为什么要演绎官方指南,我在上一篇说过了,这次没有废话,直接开始。

Estimator介绍


政安晨:

咱们先看一下Estimator的背景。

TensorFlow的Estimator API是一种高级的机器学习API,用于简化模型的训练、评估和推理过程。它提供了一种更加高层次的抽象,使开发者能够更加专注于模型的架构和数据流水线的设计,而不需要太多地关注底层的实现细节。

Estimator API提供了一套统一的接口,可以用于各种机器学习任务,如分类、回归、聚类等。它具有以下几个主要特点:

  1. 封装了模型的训练、评估和推理过程,提供了一种简单且一致的方式来组织代码和配置模型。

  2. 支持分布式训练,可以轻松地在多个GPU或多台机器上进行训练,以加速模型的训练过程。

  3. 提供了一系列内置的模型,如线性模型、DNN模型、CNN模型等,可以根据任务的需求快速构建模型。

  4. 可以使用预定义的特征列(feature columns)来处理和预处理输入数据,简化了数据准备的过程。

  5. 可以使用高层的tf.data.Dataset API来读取和处理数据,使数据加载和预处理过程更加灵活和高效。

使用Estimator API时,需要定义一个Estimator对象,这个对象包含了模型的结构和参数。然后,通过调用Estimator对象的train()方法来训练模型,evaluate()方法来评估模型,predict()方法来进行预测。在训练模型时,可以通过tf.estimator.TrainSpec对象来指定训练数据的路径和其他相关参数。在评估模型时,可以通过tf.estimator.EvalSpec对象来指定评估数据的路径和其他相关参数。

总之,Estimator API提供了一种简单、灵活且高效的方式来构建、训练和评估机器学习模型,使开发者能够更加专注于模型的设计和业务逻辑。


这篇官方文档介绍了 tf.estimator,它是一种高级 TensorFlow API。Estimator 封装了以下操作:

  • 训练
  • 评估
  • 预测
  • 导出以供使用

您可以使用我们提供的预制 Estimator 或编写您自己的自定义 Estimator。所有 Estimator(无论是预制还是自定义)都是基于 tf.estimator.Estimator 类的类。

有关 API 设计概述,请参阅白皮书。

优势

与 tf.keras.Model 类似,estimator 是模型级别的抽象。tf.estimator 提供了一些目前仍在为 tf.keras 开发中的功能。包括:

  • 基于参数服务器的训练
  • 完整的 TFX 集成

政安晨:

为了后面的演绎,我们先设置一下环境:


Estimator 功能

Estimator 提供了以下优势:

  • 您可以在本地主机上或分布式多服务器环境中运行基于 Estimator 的模型,而无需更改模型。此外,您还可以在 CPU、GPU 或 TPU 上运行基于 Estimator 的模型,而无需重新编码模型。
  • Estimator 提供了安全的分布式训练循环,可控制如何以及何时进行以下操作:
    • 加载数据
    • 处理异常
    • 创建检查点文件并从故障中恢复
    • 保存 TensorBoard 摘要

在用 Estimator 编写应用时,您必须将数据输入流水线与模型分离。这种分离简化了使用不同数据集进行的实验。

预制 Estimator

使用预制 Estimator,您能够在比基础 TensorFlow API 高很多的概念层面上工作。您无需再担心创建计算图或会话,因为 Estimator 会替您完成所有“基础工作”。此外,使用预制 Estimator,您只需改动较少代码就能试验不同的模型架构。例如,tf.estimator.DNNClassifier 是一个预制 Estimator 类,可基于密集的前馈神经网络对分类模型进行训练。

预制 Estimator 程序结构

依赖于预制 Estimator 的 TensorFlow 程序通常包括以下四个步骤:

1. 编写一个或多个数据集导入函数。

例如,您可以创建一个函数来导入训练集,创建另一个函数来导入测试集。每个数据集导入函数必须返回以下两个对象:

  • 字典,其中键是特征名称,值是包含相应特征数据的张量(或 SparseTensor)
  • 包含一个或多个标签的张量

例如,以下代码展示了输入函数的基本框架:

def input_fn(dataset):     ...  # manipulate dataset, extracting the feature dict and the label     return feature_dict, label

政安晨:

数据框架其实是这样的,不知为何官方文档中没有给出?

def train_input_fn():titanic_file = tf.keras.utils.get_file("train.csv", "https://storage.googleapis.com/tf-datasets/titanic/train.csv")titanic = tf.data.experimental.make_csv_dataset(titanic_file, batch_size=32,label_name="survived")titanic_batches = (titanic.cache().repeat().shuffle(500).prefetch(tf.data.AUTOTUNE))return titanic_batches

执行如下:


2. 定义特征列。

每个 tf.feature_column 标识了特征名称、特征类型,以及任何输入预处理。例如,以下代码段创建了三个包含整数或浮点数据的特征列。前两个特征列仅标识了特征的名称和类型。第三个特征列还指定了一个会被程序调用以缩放原始数据的 lambda:

# Define three numeric feature columns. population = tf.feature_column.numeric_column('population') crime_rate = tf.feature_column.numeric_column('crime_rate') median_education = tf.feature_column.numeric_column(   'median_education',   normalizer_fn=lambda x: x - global_education_mean)

3. 实例化相关预制 Estimator。

例如,下面是对名为 LinearClassifier 的预制 Estimator 进行实例化的示例:

# Instantiate an estimator, passing the feature columns. estimator = tf.estimator.LinearClassifier(   feature_columns=[population, crime_rate, median_education])

4. 调用训练、评估或推断方法。

例如,所有 Estimator 都会提供一个用于训练模型的 train 方法。

# `input_fn` is the function created in Step 1 estimator.train(input_fn=my_training_set, steps=2000)

预制 Estimator 的优势

预制 Estimator 对最佳做法进行了编码,具有以下优势:

  • 确定计算图不同部分的运行位置,以及在单台机器或集群上实施策略的最佳做法。
  • 事件(摘要)编写和通用摘要的最佳做法。

如果不使用预制 Estimator,则您必须自己实现上述功能。

自定义 Estimator

每个 Estimator(无论预制还是自定义)的核心是其模型函数,这是一种为训练、评估和预测构建计算图的方法。当您使用预制 Estimator 时,已经有人为您实现了模型函数。当使用自定义 Estimator 时,您必须自己编写模型函数。

推荐工作流

  1. 假设存在一个合适的预制 Estimator,用它构建您的第一个模型,并将其结果作为基准。
  2. 使用此预制 Estimator 构建并测试您的整个流水线,包括数据的完整性和可靠性。
  3. 如果有其他合适的预制 Estimator,可通过运行实验确定哪个预制 Estimator 能够生成最佳结果。
  4. 如果可能,您可以通过构建自己的自定义 Estimator 进一步改进模型。
import tensorflow as tf
import tensorflow_datasets as tfds
tfds.disable_progress_bar()

从 Keras 模型创建 Estimator

您可以使用 tf.keras.estimator.model_to_estimator 将现有的 Keras 模型转换为 Estimator。这样一来,您的 Keras 模型就可以利用 Estimator 的优势,例如分布式训练。

实例化 Keras MobileNet V2 模型并用训练中使用的优化器、损失和指标来编译模型:

keras_mobilenet_v2 = tf.keras.applications.MobileNetV2(input_shape=(160, 160, 3), include_top=False)
keras_mobilenet_v2.trainable = Falseestimator_model = tf.keras.Sequential([keras_mobilenet_v2,tf.keras.layers.GlobalAveragePooling2D(),tf.keras.layers.Dense(1)
])# Compile the model
estimator_model.compile(optimizer='adam',loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),metrics=['accuracy'])

政安晨执行:

从已编译的 Keras 模型创建 Estimator。Keras 模型的初始模型状态会保留在已创建的 Estimator中:

est_mobilenet_v2 = tf.keras.estimator.model_to_estimator(keras_model=estimator_model)

您可以像对待任何其他 Estimator 一样对待派生的 Estimator

IMG_SIZE = 160  # All images will be resized to 160x160def preprocess(image, label):image = tf.cast(image, tf.float32)image = (image/127.5) - 1image = tf.image.resize(image, (IMG_SIZE, IMG_SIZE))return image, label
def train_input_fn(batch_size):data = tfds.load('cats_vs_dogs', as_supervised=True)train_data = data['train']train_data = train_data.map(preprocess).shuffle(500).batch(batch_size)return train_data

要进行训练,可调用 Estimator 的训练函数:

est_mobilenet_v2.train(input_fn=lambda: train_input_fn(32), steps=500)

同样,要进行评估,可调用 Estimator 的评估函数:

est_mobilenet_v2.evaluate(input_fn=lambda: train_input_fn(32), steps=10)

有关详细信息,请参阅 tf.keras.estimator.model_to_estimator 文档。

写在最后

其实这一篇中官方指南并不详尽,尤其是最后的训练部分,咱们补充了一些,但仍然存在缺失,我将在后续的文章中以实际项目为例,详细演绎。

这篇关于政安晨:示例演绎TensorFlow的官方指南(二){Estimator}的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688972

相关文章

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方