Transformer实战-系列教程10:SwinTransformer 源码解读3

2024-02-07 17:44

本文主要是介绍Transformer实战-系列教程10:SwinTransformer 源码解读3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🚩🚩🚩Transformer实战-系列教程总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传
点我下载源码

5、SwinTransformerBlock类

class SwinTransformerBlock(nn.Module):def extra_repr(self) -> str:return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"

5.1 构造函数

SwinTransformerBlock 是 Swin Transformer 模型中的一个基本构建块。它结合了自注意力机制和多层感知机(MLP),并通过窗口划分和可选的窗口位移来实现局部注意力

def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.input_resolution = input_resolutionself.num_heads = num_headsself.window_size = window_sizeself.shift_size = shift_sizeself.mlp_ratio = mlp_ratioif min(self.input_resolution) <= self.window_size:self.shift_size = 0self.window_size = min(self.input_resolution)assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"self.norm1 = norm_layer(dim)self.attn = WindowAttention(dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)if self.shift_size > 0:H, W = self.input_resolutionimg_mask = torch.zeros((1, H, W, 1))  # 1 H W 1h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))cnt = 0for h in h_slices:for w in w_slices:img_mask[:, h, w, :] = cntcnt += 1mask_windows = window_partition(img_mask, self.window_size)mask_windows = mask_windows.view(-1, self.window_size * self.window_size)attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))else:attn_mask = Noneself.register_buffer("attn_mask", attn_mask)
  1. dim:输入特征的通道数。
  2. input_resolution:输入特征的分辨率(高度和宽度)
  3. num_heads:自注意力头的数量
  4. window_size:窗口大小,决定了注意力机制的局部范围
  5. shift_size:窗口位移的大小,用于实现错位窗口多头自注意力(SW-MSA)
  6. mlp_ratio:MLP隐层大小与输入通道数的比率
  7. qkv_bias:QKV的偏置
  8. qk_scale:QKV的缩放因子
  9. drop:丢弃率
  10. drop_path:分别控制QKV的偏差、缩放因子、丢弃率、注意力丢弃率和随机深度率
  11. norm_layer:激活层和标准化层,默认分别为 GELU 和 LayerNorm
  12. WindowAttention:窗口注意力模块
  13. Mlp:一个包含全连接层、激活函数、Dropout的模块
  14. img_mask :图像掩码,用于生成错位窗口自注意力
  15. h_slicesw_slices:水平和垂直方向上的切片,用于划分图像掩码
  16. cnt :计数器,标记不同的窗口
  17. mask_windows :图像掩码划分为窗口,并将每个窗口的掩码重塑为一维向量
  18. window_partition
  19. attn_mask :注意力掩码,用于在自注意力计算中排除窗口外的位置
  20. register_buffer:注意力掩码注册为一个模型的缓冲区

5.2 前向传播

def forward(self, x):H, W = self.input_resolutionB, L, C = x.shapeassert L == H * W, "input feature has wrong size"shortcut = xx = self.norm1(x)x = x.view(B, H, W, C)if self.shift_size > 0:shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))else:shifted_x = xx_windows = window_partition(shifted_x, self.window_size)x_windows = x_windows.view(-1, self.window_size * self.window_size, C)attn_windows = self.attn(x_windows, mask=self.attn_mask)  # nW*B, window_size*window_size, Cattn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' Cif self.shift_size > 0:x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))else:x = shifted_xx = x.view(B, H * W, C)x = shortcut + self.drop_path(x)x = x + self.drop_path(self.mlp(self.norm2(x)))return x
  1. 原始输入: torch.Size([4, 3136, 96]),输入的是一个长度为3136的序列,每个向量的维度为96,在
    被多次调用的时候,维度也发生了变化原始输入: torch.Size([4, 784, 192])、torch.Size([4, 196, 384])、torch.Size([4, 49, 768])
  2. H,W=[ 56,56],输入分辨率中的高度和宽度
  3. B, L, C=[ 4,3136,96],当前输入的维度,批次大小、序列长度和向量的维度
  4. norm1(x): torch.Size([4, 3136, 96]),经过一个层归一化,维度不变
  5. x.view(B, H, W, C): torch.Size([4, 56, 56, 96]),将序列重塑为(Batch_size,Height,Width,Channel)的形状
  6. shifted_x: torch.Size([4, 56, 56, 96]),位移操作后的x
  7. x_windows: torch.Size([256, 7, 7, 96]),将位移后的特征图划分为窗口
  8. x_windows: torch.Size([256, 49, 96]),将窗口重塑为一维向量,以便进行自注意力计算
  9. attn_windows: torch.Size([256, 7, 7, 96]),对每个窗口应用窗口注意力机制,考虑到可能的注意力掩码
  10. shifted_x: torch.Size([4, 56, 56, 96]),注意力操作后的窗口重塑回原始形状,并将它们合并回完整的特征图
  11. torch.Size([4, 56, 56, 96]),如果进行了循环位移,则执行逆向循环位移操作,以恢复原始特征图的位置
  12. torch.Size([4, 3136, 96]),特征图重塑回原始的[B, L, C]形状
  13. torch.Size([4, 3136, 96]),应用残差连接,并通过随机深度(如果设置了的话)
  14. torch.Size([4, 3136, 96]),应用第二个标准化层,然后是MLP,并再次应用随机深度,完成残差连接的最后一步。

这篇关于Transformer实战-系列教程10:SwinTransformer 源码解读3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688455

相关文章

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则