NCCL源码解析: P2P 连接的建立

2024-02-07 13:20

本文主要是介绍NCCL源码解析: P2P 连接的建立,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 概括
  • 详解
    • ncclTransportP2pSetup()

前言

NCCL 源码解析总目录

我尽量在每个函数之前介绍每个函数的作用,建议先不要投入到函数内部实现,先把函数作用搞清楚,有了整体框架,再回归到细节。

习惯: 我的笔记习惯:为了便于快速理解,函数调用关系通过缩进表示,也可能是函数展开,根据情况而定。

如下

// 调用 proxyConnInit
NCCLCHECK(proxyConnInit(peer, connectionPool, proxyState, (ncclProxyInitReq*) op->reqBuff, (ncclProxyInitResp*) op->respBuff, &op->connection));
// 对函数 proxyConnInit 进行展开,可方便看参数
static ncclResult_t proxyConnInit(struct ncclProxyLocalPeer* peer, struct ncclProxyConnectionPool* connectionPool, struct ncclProxyState* proxyState, ncclProxyInitReq* req, ncclProxyInitResp* resp, struct 

如有问题,请留言指正。

图后面再补;
有些遗漏之处,还没涉及,后面补;
闲话后面再补。

概括

recvpeer 表示本卡作为接收端的对端
sendpeer 表示本卡作为发送端的对端

对于每个 channel ,卡与卡之间要建立通信,先通过调用 selectTransport<0>() 建立接收通道,0 表示与 recvpeer 建立通信,再通过selectTransport<1>() 建立发送通道,1表示与 sendpeer 建立通信。
建立通道时会遍历 NTRANSPORTS 4种情况:P2P、共享内存、网络、collNet(collective Network, 还没看,不了解)

struct ncclTransport* ncclTransports[NTRANSPORTS] = {&p2pTransport,&shmTransport,&netTransport,&collNetTransport
};

本文重点关注 P2P。

接口如下:

struct ncclTransport p2pTransport = {"P2P",p2pCanConnect,{ p2pSendSetup, p2pSendConnect, p2pSendFree, NULL, p2pSendProxySetup, NULL, p2pSendProxyFree, NULL },{ p2pRecvSetup, p2pRecvConnect, p2pRecvFree, NULL, p2pRecvProxySetup, NULL, p2pRecvProxyFree, NULL }
};

发送建立流程为 p2pCanConnect() -> p2pSendSetup() -> p2pSendProxySetup()
接收建立流程为 p2pCanConnect() -> p2pRecvSetup() -> p2pRecvProxySetup()

先检查两个卡支不支持 P2P,主要检查两项:设备支不支持、路径支不支持,路径类型要小于 PATH_PXB,即不通过主桥的路径;
然后 p2pSendSetup() 填充一下 p2pConnectInfo, 向 proxy 线程请求 ncclProxyMsgSetup;
proxy 线程调用 p2pSendProxySetup(), 在本卡内申请显存,返回首地址以及相应的句柄devIpc, 其他进程或者线程可以通过这个句柄,获得此显存的操作地址。(我猜是让对端 GPU 卡也来操作这段内存,从而完成通信,还没看到那一步,完事来更新)
接收与发送机制一样。

详解

ncclTransportP2pSetup()

此P2P 非彼 P2P。ncclTransportP2pSetup 的 P2P 是广义上的两个设备之间的通信设置,包含 P2P、网络以及共享内存等。
建立两卡通信的入口函数。
因为要与 proxy 双线程操作,但是又是同步的,所以下文把两个线程的操作线性展开了,请注意。

ncclTransportP2pSetup(comm, &ringGraph, 0)
ncclTransportP2pSetup(struct ncclComm* comm, struct ncclTopoGraph* graph, int connIndex, int* highestTransportType/*=NULL*/)
{// 信息保存在 data[i] 中, i 为 rank// data[i] 大小为 2 * 64 个 connect, 先存放 recv, 再存放 sendrecvData[i] = data[i];// recvData[]  所有 recvChannels 的 ncclConnect 缓冲区的首地址// 首先 <0> 表示处理的是接收,处理与前一个 rank 的连接selectTransport<0>(comm, graph, recvData[i]+recvChannels++, c, recvPeer, connIndex, &type)static ncclResult_t selectTransport(struct ncclComm* comm, struct ncclTopoGraph* graph, struct ncclConnect* connect, int channelId, int peer, int connIndex, int* transportType){struct ncclPeerInfo* myInfo = comm->peerInfo+comm->rank;struct ncclPeerInfo* peerInfo = comm->peerInfo+peer;struct ncclConnector* connector = (type == 1) ? comm->channels[channelId].peers[peer]->send + connIndex :comm->channels[channelId].peers[peer]->recv + connIndex;NCCLCHECK(transportComm->setup(comm, graph, myInfo, peerInfo, connect, connector, channelId, connIndex)){NCCLCHECK(ncclCalloc(&resources, 1));recv->transportResources = resources;struct p2pConnectInfo* info = (struct p2pConnectInfo*)connectInfo;// 如果使用nvlink, 且两个GPU 计算能力一样,(gpu1->gpu.cudaCompCap == 80), 那么 useRead = 1// 如果通过参数 P2P_READ_ENABLE 设置该值,  P2P 使用 read 而不是 writeinfo->read = useRead; for (int p=0; p<NCCL_NUM_PROTOCOLS; p++) if (!(info->read && p == NCCL_PROTO_SIMPLE)) recvSize += comm->buffSizes[p];// 如果同一个进程内的,且 DirectDisable 没有设置,P2P_USE_CUDA_MEMCPY 参数没有设置,并且ncclCuMemEnable 为假// 那么{resources->type = P2P_DIRECT;recv->conn.flags |= info->read ? NCCL_DIRECT_READ : NCCL_DIRECT_WRITE;}// 建立到 proxy 的连接, 连接信息在 recv->proxyConnNCCLCHECK(ncclProxyConnect(comm, TRANSPORT_P2P, 0, tpProxyRank, &recv->proxyConn));// 请求 proxy 执行 ncclProxyMsgSetup// recvSize += comm->buffSizes[p];// 发送数据 4字节 recvSize  10485760 = 4096 + NCCL_NUM_PROTOCOLS 3 类型的缓冲区大小// 接收数据缓冲区 info->p2pBuff// 要接收的大小 sizeof(struct ncclP2pBuff)// info->p2pBuff 保存 buf 信息NCCLCHECK(ncclProxyCallBlocking(comm, &recv->proxyConn, ncclProxyMsgSetup, &recvSize, sizeof(int), &info->p2pBuff, sizeof(struct ncclP2pBuff)));// 下面为 proxy 线程// proxy 线程接收数据进行处理{// op->connection : 设备与 proxy 连接的控制对象// proxyState : rank 的 ncclProxyState// op->reqBuff : proxy 本地的接收缓冲区首地址, 按照  op->reqSize 大小申请// op->reqSize : 客户端发送的发送数据的大小// op->respBuff: proxy 本地的发送缓冲区的首地址,按照 op->respSize 大小申请// p2pRecvProxySetup : 设备申请内存,首地址信息存入 respBuffNCCLCHECK(op->connection->tcomm->proxySetup(op->connection, proxyState, op->reqBuff, op->reqSize, op->respBuff, op->respSize, &done));static ncclResult_t p2pRecvProxySetup(struct ncclProxyConnection* connection, struct ncclProxyState* proxyState, void* reqBuff, int reqSize, void* respBuff, int respSize, int* done) {// 获取设备侧告知的 recvSize 的值 10485760int size = *((int*)reqBuff);struct ncclP2pBuff* p2pBuff = (struct ncclP2pBuff*)respBuff;NCCLCHECK(ncclP2pAllocateShareableBuffer(size, &p2pBuff->ipcDesc, &p2pBuff->directPtr));ncclResult_t ncclP2pAllocateShareableBuffer(size_t size, ncclIpcDesc *ipcDesc, void **ptr) {// 在设备侧申请内存,地址保存在 ptrNCCLCHECK(ncclCudaCalloc((char **)ptr, size));// cudaIpcGetMemHandle : 获取现有设备内存分配的进程间内存句柄// 获取指向使用cudaMalloc创建的现有设备内存分配的基址的指针,并将其导出以供另一个进程使用// __host__ cudaError_t cudaIpcGetMemHandle ( cudaIpcMemHandle_t* handle, void* devPtr )// 获取现有设备内存分配的进程间内存句柄。// 参数:// handle - 指向用户分配的 cudaIpcMemHandle 以返回句柄的指针。// devPtr - 指向先前分配的设备内存的基指针cudaError_t res = cudaIpcGetMemHandle(&ipcDesc->devIpc, *ptr);// cudaIpcOpenMemHandle : 打开从另一个进程导出的进程间内存句柄并返回可用于本地进程的设备指针// __host__ cudaError_t cudaIpcOpenMemHandle ( void** devPtr, cudaIpcMemHandle_t handle, unsigned int  flags )// 打开从另一个进程导出的进程间内存句柄并返回可用于本地进程的设备指针。// 参数// devPtr - 返回设备指针// handle - cudaIpcMemHandle 打开// flags - 此操作的标志。必须指定为cudaIpcMemLazyEnablePeerAccess}p2pBuff->size = size;connection->transportResources = p2pBuff->directPtr;}}// 下面不是 proxy 线程// 设备收到 proxy 返回的信息: 设备内部申请的缓冲区首地址,以及地址句柄 ipcDesc->devIpc// comm->peerInfo AllGather1 时保存的所有 rank 的信息: rank cudaDev hostHash pidHash busId// info->rank = myInfo->rank// p2pBuff : info->p2pBuff// devMem : (void**)&resources->recvDevMem 设备接收资源的接收缓冲区内存指针地址// ipcPtr : &resources->recvMemIpc 设备接收资源的接收 内存Ipc 指针地址NCCLCHECK(p2pMap(comm, myInfo, comm->peerInfo+info->rank, &info->p2pBuff, (void**)&resources->recvDevMem, &resources->recvMemIpc));static ncclResult_t p2pMap(struct ncclComm *comm, struct ncclPeerInfo* myInfo, struct ncclPeerInfo* peerInfo, struct ncclP2pBuff* p2pBuff, void** devMem, void** ipcPtr){// 如果 ncclCuMemEnable 为假,且两个 GPU 设备在同一进程中// 那么{// 如果本设备与对端设备不是同一设备if (peerInfo->cudaDev != myInfo->cudaDev) {// 如果可以从设备直接访问 peerDevice,则可以通过调用 cudaDeviceEnablePeerAccess() 来启用访问cudaError_t err = cudaDeviceEnablePeerAccess(peerInfo->cudaDev, 0);}// 把 proxy 从设备申请的内存首地址赋值给 *devMem,即 resources->recvDevMem// resources->recvDevMem = p2pBuff->directPtr;*devMem = p2pBuff->directPtr;// 同一个设备不用 ipc*ipcPtr = NULL;}else{if ((myInfo->pidHash == peerInfo->pidHash) && (peerInfo->cudaDev == myInfo->cudaDev)) {// 同一个进程,同一个设备// Same PID and GPU*devMem = p2pBuff->directPtr;*ipcPtr = NULL;} else {// 不同进程或者不同设备// Different PID or different GPUNCCLCHECK(ncclP2pImportShareableBuffer(comm, comm->topParentRanks[peerInfo->rank], p2pBuff->size, &p2pBuff->ipcDesc, devMem));ncclResult_t ncclP2pImportShareableBuffer(struct ncclComm *comm, int tpPeer, size_t size, ncclIpcDesc *ipcDesc, void **devMemPtr) {// cudaIpcOpenMemHandle : 打开从另一个进程导出的进程间内存句柄并返回可用于本地进程的设备指针// __host__ cudaError_t cudaIpcOpenMemHandle ( void** devPtr, cudaIpcMemHandle_t handle, unsigned int  flags )// 打开从另一个进程导出的进程间内存句柄并返回可用于本地进程的设备指针。// 参数// devPtr - 返回设备指针// handle - cudaIpcMemHandle 打开// flags - 此操作的标志。必须指定为cudaIpcMemLazyEnablePeerAccess// 通过 ipcDesc->devIpc 获取设备内存首地址 devMemPtrCUDACHECK(cudaIpcOpenMemHandle(devMemPtr, ipcDesc->devIpc, cudaIpcMemLazyEnablePeerAccess));}// devMem 已经赋值为设备内存首地址*ipcPtr = *devMem;}}}}}// 发送// 信息保存在 data[i] 中, i 为 rank// data[i] 大小为 2 * 64 个 connect, 先存放 recv, 再存放 send// sendData[]  所有 recvChannels 的发送 ncclConnect 缓冲区的首地址sendData[i] = recvData[i] + recvChannels;// 调用发送,处理与后一个 rank 的连接NCCLCHECKGOTO(selectTransport<1>(comm, graph, sendData[i]+sendChannels++, c, sendPeer, connIndex, &type), ret, fail);static ncclResult_t selectTransport(struct ncclComm* comm, struct ncclTopoGraph* graph, struct ncclConnect* connect, int channelId, int peer, int connIndex, int* transportType) {NCCLCHECK(transportComm->setup(comm, graph, myInfo, peerInfo, connect, connector, channelId, connIndex));ncclResult_t p2pSendSetup(struct ncclComm* comm, struct ncclTopoGraph* graph, struct ncclPeerInfo* myInfo, struct ncclPeerInfo* peerInfo, struct ncclConnect* connectInfo, struct ncclConnector* send, int channelId, int connIndex){NCCLCHECK(ncclCalloc(&resources, 1));send->transportResources = resources;info->read = useRead;if (graph && connIndex == 1) info->read = 0;const char* useReadStr = info->read ? "/read" : "";// For P2P Read the SIMPLE buffer is tagged on the end of the ncclSendMem structureif (info->read) // 只有读的时候,使用缓冲区 NCCL_PROTO_SIMPLEsendSize += comm->buffSizes[NCCL_PROTO_SIMPLE];info->rank = myInfo->rank;resources->type = P2P_DIRECT;send->conn.flags |= info->read ? NCCL_DIRECT_READ : NCCL_DIRECT_WRITE;// 与接收一样的操作// 设备收到 proxy 返回的信息保存在 p2pBuff中: 设备内部申请的缓冲区首地址,以及地址句柄 ipcDesc->devIpcNCCLCHECK(ncclProxyCallBlocking(comm, &send->proxyConn, ncclProxyMsgSetup, &sendSize, sizeof(int), &info->p2pBuff, sizeof(struct ncclP2pBuff)));// p2pMap : 根据接收到的信息做一个发送缓冲区的首地址解析,得到 sendDevMem 或者 sendMemIpc// info->rank = myInfo->rank// p2pBuff : info->p2pBuff// devMem : (void**)&resources->recvDevMem 设备接收资源的接收缓冲区内存指针地址// ipcPtr : &resources->recvMemIpc 设备接收资源的接收 内存Ipc 指针地址NCCLCHECK(p2pMap(comm, myInfo, comm->peerInfo+info->rank, &info->p2pBuff, (void**)&resources->sendDevMem, &resources->sendMemIpc));}}if (sendPeer == recvPeer) {if (recvChannels+sendChannels) {NCCLCHECKGOTO(bootstrapSend(comm->bootstrap, recvPeer, bootstrapTag, data[i], sizeof(struct ncclConnect)*(recvChannels+sendChannels)), ret, fail);NCCLCHECKGOTO(bootstrapRecv(comm->bootstrap, recvPeer, bootstrapTag, data[i], sizeof(struct ncclConnect)*(recvChannels+sendChannels)), ret, fail);sendData[i] = data[i];recvData[i] = data[i]+sendChannels;}} else {// 如果 sendPeer recvPeer 不是同一个// 假设 0 -> 1 -> 2, 当前 rank 为 1// sendPeer = 2, recvPeer = 0// sendPeer : 我作为发送的对端 rank// recvPeer : 我作为接收的对端 rankif (recvChannels) // 向前一个 rank 发送 recvChannels 个接收连接信息NCCLCHECKGOTO(bootstrapSend(comm->bootstrap, recvPeer, bootstrapTag, recvData[i], sizeof(struct ncclConnect)*recvChannels), ret, fail);if (sendChannels) // 向后一个 rank 发送 recvChannels 个发送连接信息NCCLCHECKGOTO(bootstrapSend(comm->bootstrap, sendPeer, bootstrapTag, sendData[i], sizeof(struct ncclConnect)*sendChannels), ret, fail);if (sendChannels) // 接收后一个 rank 的接收连接信息到 sendDataNCCLCHECKGOTO(bootstrapRecv(comm->bootstrap, sendPeer, bootstrapTag, sendData[i], sizeof(struct ncclConnect)*sendChannels), ret, fail);if (recvChannels) // 接收前一个 rank 的接收发送信息NCCLCHECKGOTO(bootstrapRecv(comm->bootstrap, recvPeer, bootstrapTag, recvData[i], sizeof(struct ncclConnect)*recvChannels), ret, fail);}
}

这篇关于NCCL源码解析: P2P 连接的建立的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/687863

相关文章

VScode连接远程Linux服务器环境配置图文教程

《VScode连接远程Linux服务器环境配置图文教程》:本文主要介绍如何安装和配置VSCode,包括安装步骤、环境配置(如汉化包、远程SSH连接)、语言包安装(如C/C++插件)等,文中给出了详... 目录一、安装vscode二、环境配置1.中文汉化包2.安装remote-ssh,用于远程连接2.1安装2

关于rpc长连接与短连接的思考记录

《关于rpc长连接与短连接的思考记录》文章总结了RPC项目中长连接和短连接的处理方式,包括RPC和HTTP的长连接与短连接的区别、TCP的保活机制、客户端与服务器的连接模式及其利弊分析,文章强调了在实... 目录rpc项目中的长连接与短连接的思考什么是rpc项目中的长连接和短连接与tcp和http的长连接短

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Xshell远程连接失败以及解决方案

《Xshell远程连接失败以及解决方案》本文介绍了在Windows11家庭版和CentOS系统中解决Xshell无法连接远程服务器问题的步骤,在Windows11家庭版中,需要通过设置添加SSH功能并... 目录一.问题描述二.原因分析及解决办法2.1添加ssh功能2.2 在Windows中开启ssh服务2

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re