从头开始构建和训练 Transformer(下)

2024-02-07 05:04

本文主要是介绍从头开始构建和训练 Transformer(下),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导 读

上一篇推文从头开始构建和训练 Transformer(上)icon-default.png?t=N7T8https://blog.csdn.net/weixin_46287760/article/details/136048418介绍了构建和训练Transformer的过程和构建每个组件的代码示例。本文将使用数据对该架构进行代码演示,验证其模型性能。

本期『数据+代码』已上传百度网盘。

有需要的朋友关注公众号【小Z的科研日常】,回复关键词[Transformer]获取

01、加载数据集

对于此任务,我们将使用🤗Hugging Face 上提供的OpusBooks 数据集。该数据集由两个特征组成,idtranslation。该translation功能包含不同语言的句子对,例如西班牙语和葡萄牙语、英语和法语等。

我首先尝试将句子从英语翻译成葡萄牙语,但是这对句子只有 1.4k个示例,因此在该模型的当前配置中结果并不令人满意。然后,我尝试使用英语-法语对,因为它的示例数量较多(127k),但使用当前配置进行训练需要很长时间。

我们首先定义get_all_sentences函数来迭代数据集并根据定义的语言对提取句子。

# 迭代数据集,提取原句及其译文
def get_all_sentences(ds, lang):for pair in ds:yield pair['translation'][lang]

get_ds函数定义为加载和准备数据集以进行训练和验证。在此函数中,我们构建或加载分词器、拆分数据集并创建 DataLoader,以便模型可以成功地批量迭代数据集。这些函数的结果是源语言和目标语言的标记器以及 DataLoader 对象。

def get_ds(config):# 语言对将在我们稍后创建的 "配置 "字典中定义。ds_raw = load_dataset('opus_books', f'{config["lang_src"]}-{config["lang_tgt"]}', split = 'train') # 为源语言和目标语言构建或加载标记符tokenizer_src = build_tokenizer(config, ds_raw, config['lang_src'])tokenizer_tgt = build_tokenizer(config, ds_raw, config['lang_tgt'])# 分割数据集进行训练和验证train_ds_size = int(0.9 * len(ds_raw)) # 90% for trainingval_ds_size = len(ds_raw) - train_ds_size # 10% for validationtrain_ds_raw, val_ds_raw = random_split(ds_raw, [train_ds_size, val_ds_size]) # Randomly splitting the dataset# 使用双语数据集(BilingualDataset)类处理数据,我们将在下面定义该类train_ds = BilingualDataset(train_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])val_ds = BilingualDataset(val_ds_raw, tokenizer_src, tokenizer_tgt, config['lang_src'], config['lang_tgt'], config['seq_len'])# 对整个数据集进行迭代,并打印在源语言和目标语言句子中找到的最大长度max_len_src = 0max_len_tgt = 0for pair in ds_raw:src_ids = tokenizer_src.encode(pair['translation'][config['lang_src']]).idstgt_ids = tokenizer_src.encode(pair['translation'][config['lang_tgt']]).idsmax_len_src = max(max_len_src, len(src_ids))max_len_tgt = max(max_len_tgt, len(tgt_ids))print(f'Max length of source sentence: {max_len_src}')print(f'Max length of target sentence: {max_len_tgt}')# 为训练集和验证集创建数据加载器# 在训练和验证过程中,使用数据加载器分批迭代数据集train_dataloader = DataLoader(train_ds, batch_size = config['batch_size'], shuffle = True) # Batch size will be defined in the config dictionaryval_dataloader = DataLoader(val_ds, batch_size = 1, shuffle = True)return train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt # Returning the DataLoader objects and tokenizers

我们定义casual_mask函数来为解码器的注意力机制创建掩码。此掩码可防止模型获得有关序列中未来元素的信息。

我们首先制作一个充满 1 的方形网格。我们用参数确定网格大小size。然后,我们将主对角线上方的所有数字更改为零。一侧的每个数字都变成零,而其余的仍然是1。然后该函数翻转所有这些值,将 1 变为 0,将 0 变为 1。这个过程对于预测序列中未来标记的模型至关重要。

02、验证循环

我们现在将为验证循环创建两个函数。验证循环对于评估模型从训练期间未见过的数据翻译句子的性能至关重要。

我们将定义两个函数。第一个函数 ,greedy_decode通过获取最可能的下一个标记为我们提供模型的输出。第二个函数run_validation负责运行验证过程,在该过程中我们解码模型的输出并将其与目标句子的参考文本进行比较。

class BilingualDataset(Dataset):def __init__(self, ds, tokenizer_src, tokenizer_tgt, src_lang, tgt_lang, seq_len) -> None:super().__init__()self.seq_len = seq_lenself.ds = dsself.tokenizer_src = tokenizer_srcself.tokenizer_tgt = tokenizer_tgtself.src_lang = src_langself.tgt_lang = tgt_langself.sos_token = torch.tensor([tokenizer_tgt.token_to_id("[SOS]")], dtype=torch.int64)self.eos_token = torch.tensor([tokenizer_tgt.token_to_id("[EOS]")], dtype=torch.int64)self.pad_token = torch.tensor([tokenizer_tgt.token_to_id("[PAD]")], dtype=torch.int64)def __len__(self):return len(self.ds)def __getitem__(self, index: Any) -> Any:src_target_pair = self.ds[index]src_text = src_target_pair['translation'][self.src_lang]tgt_text = src_target_pair['translation'][self.tgt_lang]enc_input_tokens = self.tokenizer_src.encode(src_text).idsdec_input_tokens = self.tokenizer_tgt.encode(tgt_text).idsenc_num_padding_tokens = self.seq_len - len(enc_input_tokens) - 2 # Subtracting the two '[EOS]' and '[SOS]' special tokensdec_num_padding_tokens = self.seq_len - len(dec_input_tokens) - 1 # Subtracting the '[SOS]' special tokenif enc_num_padding_tokens < 0 or dec_num_padding_tokens < 0:raise ValueError('Sentence is too long')encoder_input = torch.cat([self.sos_token, # inserting the '[SOS]' tokentorch.tensor(enc_input_tokens, dtype = torch.int64), # Inserting the tokenized source textself.eos_token, # Inserting the '[EOS]' tokentorch.tensor([self.pad_token] * enc_num_padding_tokens, dtype = torch.int64) # Addind padding tokens])decoder_input = torch.cat([self.sos_token, # inserting the '[SOS]' token torch.tensor(dec_input_tokens, dtype = torch.int64), # Inserting the tokenized target texttorch.tensor([self.pad_token] * dec_num_padding_tokens, dtype = torch.int64) # Addind padding tokens])label = torch.cat([torch.tensor(dec_input_tokens, dtype = torch.int64), # Inserting the tokenized target textself.eos_token, # Inserting the '[EOS]' token torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype = torch.int64) # Adding padding tokens])assert encoder_input.size(0) == self.seq_lenassert decoder_input.size(0) == self.seq_lenassert label.size(0) == self.seq_lenreturn {'encoder_input': encoder_input,'decoder_input': decoder_input, 'encoder_mask': (encoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int(),'decoder_mask': (decoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int() & casual_mask(decoder_input.size(0)), 'label': label,'src_text': src_text,'tgt_text': tgt_text}  

03、训练循环

我们已准备好在 OpusBook 数据集上训练 Transformer 模型,以执行英语到意大利语翻译任务。我们首先通过调用我们之前定义的get_model函数来定义加载模型的函数。build_transformer该函数使用config字典来设置一些参数。

def get_model(config, vocab_src_len, vocab_tgt_len):model = build_transformer(vocab_src_len, vocab_tgt_len, config['seq_len'], config['seq_len'], config['d_model'])return model 

下面我们将定义两个函数来配置我们的模型和训练过程。

get_config函数中,我们定义了训练过程的关键参数。batch_size一次迭代中使用的训练示例的数量、num_epochs整个数据集通过 Transformer 向前和向后传递的次数、lr优化器的学习率等。我们最终还将定义来自 OpusBook 数据集的对,'lang_src': 'en'用于选择英语作为源语言以及'lang_tgt': 'it'选择意大利语作为目标语言。

get_weights_file_path函数构建用于保存或加载任何特定时期的模型权重的文件路径。

def get_config():return{'batch_size': 8,'num_epochs': 20,'lr': 10**-4,'seq_len': 350,'d_model': 512, 'lang_src': 'en','lang_tgt': 'it','model_folder': 'weights','model_basename': 'tmodel_','preload': None,'tokenizer_file': 'tokenizer_{0}.json','experiment_name': 'runs/tmodel'}def get_weights_file_path(config, epoch: str):model_folder = config['model_folder'] model_basename = config['model_basename'] model_filename = f"{model_basename}{epoch}.pt" return str(Path('.')/ model_folder/ model_filename)

我们最终定义了最后一个函数 ,train_model它将config参数作为输入。

在此函数中,我们将为训练设置一切。我们将模型及其必要组件加载到 GPU 上以加快训练速度,设置Adam优化器并配置CrossEntropyLoss函数来计算模型输出的翻译与数据集中的参考翻译之间的差异。

迭代训练批次、执行反向传播和计算梯度所需的每个循环都在此函数中。我们还将使用它来运行验证函数并保存模型的当前状态。

def train_model(config):# 设置设备在 GPU 上运行,以加快训练速度device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')print(f"Using device {device}")# 创建模型目录以存储权重Path(config['model_folder']).mkdir(parents=True, exist_ok=True)# 使用 "get_ds "函数检索源语言和目标语言的数据加载器和标记器train_dataloader, val_dataloader, tokenizer_src, tokenizer_tgt = get_ds(config)# 使用 "get_model "函数在 GPU 上初始化模型model = get_model(config,tokenizer_src.get_vocab_size(), tokenizer_tgt.get_vocab_size()).to(device)# Tensorboardwriter = SummaryWriter(config['experiment_name'])# 使用'# config'字典中的指定学习率和ε值设置优化器optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], eps = 1e-9)# 初始化和全局步长变量initial_epoch = 0global_step = 0if config['preload']:model_filename = get_weights_file_path(config, config['preload'])print(f'Preloading model {model_filename}')state = torch.load(model_filename) # Loading modelinitial_epoch = state['epoch'] + 1optimizer.load_state_dict(state['optimizer_state_dict'])global_step = state['global_step']loss_fn = nn.CrossEntropyLoss(ignore_index = tokenizer_src.token_to_id('[PAD]'), label_smoothing = 0.1).to(device)for epoch in range(initial_epoch, config['num_epochs']):batch_iterator = tqdm(train_dataloader, desc = f'Processing epoch {epoch:02d}')for batch in batch_iterator:model.train() # Train the modelencoder_input = batch['encoder_input'].to(device)decoder_input = batch['decoder_input'].to(device)encoder_mask = batch['encoder_mask'].to(device)decoder_mask = batch['decoder_mask'].to(device)encoder_output = model.encode(encoder_input, encoder_mask)decoder_output = model.decode(encoder_output, encoder_mask, decoder_input, decoder_mask)proj_output = model.project(decoder_output)label = batch['label'].to(device)loss = loss_fn(proj_output.view(-1, tokenizer_tgt.get_vocab_size()), label.view(-1))batch_iterator.set_postfix({f"loss": f"{loss.item():6.3f}"})writer.add_scalar('train loss', loss.item(), global_step)writer.flush()loss.backward()optimizer.step()optimizer.zero_grad()global_step += 1 run_validation(model, val_dataloader, tokenizer_src, tokenizer_tgt, config['seq_len'], device, lambda msg: batch_iterator.write(msg), global_step, writer)model_filename = get_weights_file_path(config, f'{epoch:02d}')torch.save({'epoch': epoch, # Current epoch'model_state_dict': model.state_dict(),# Current model state'optimizer_state_dict': optimizer.state_dict(), # Current optimizer state'global_step': global_step # Current global step }, model_filename)

现在开始训练我们的模型!

if __name__ == '__main__':warnings.filterwarnings('ignore') # 忽略警告config = get_config() # 检索配置设置train_model(config) # 使用配置参数训练模型

结果如下:

Using device cuda
Downloading builder script:
6.08k/? [00:00<00:00, 391kB/s]
Downloading metadata:
161k/? [00:00<00:00, 11.0MB/s]
Downloading and preparing dataset opus_books/en-it (download: 3.14 MiB, generated: 8.58 MiB, post-processed: Unknown size, total: 11.72 MiB) to /root/.cache/huggingface/datasets/opus_books/en-it/1.0.0/e8f950a4f32dc39b7f9088908216cd2d7e21ac35f893d04d39eb594746af2daf...
Downloading data: 100%
3.30M/3.30M [00:00<00:00, 10.6MB/s]
Dataset opus_books downloaded and prepared to /root/.cache/huggingface/datasets/opus_books/en-it/1.0.0/e8f950a4f32dc39b7f9088908216cd2d7e21ac35f893d04d39eb594746af2daf. Subsequent calls will reuse this data.
Max length of source sentence: 309
Max length of target sentence: 274
....................................................................

04、结论

在本文中,我们深入探索了原始 Transformer 架构,如《Attention Is All You Need》研究论文中所述。我们使用 PyTorch 在语言翻译任务上逐步实现它,使用 OpusBook 数据集进行英语到意大利语的翻译。

Transformer 是向当今最先进模型(例如 OpenAI 的 GPT-4 模型)迈出的革命性一步。这就是为什么理解这种架构如何工作以及它可以实现什么如此重要。

参考论文:“Attention Is All You Need”

这篇关于从头开始构建和训练 Transformer(下)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/686587

相关文章

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

一文教你Java如何快速构建项目骨架

《一文教你Java如何快速构建项目骨架》在Java项目开发过程中,构建项目骨架是一项繁琐但又基础重要的工作,Java领域有许多代码生成工具可以帮助我们快速完成这一任务,下面就跟随小编一起来了解下... 目录一、代码生成工具概述常用 Java 代码生成工具简介代码生成工具的优势二、使用 MyBATis Gen

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加