中科大何向南团队+快手App联合出品 KuaiRec | 快手首个稠密为99.6%的数据集 | 相关介绍、下载、处理、使用方法

本文主要是介绍中科大何向南团队+快手App联合出品 KuaiRec | 快手首个稠密为99.6%的数据集 | 相关介绍、下载、处理、使用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 数据集介绍
    • 1.1 相关链接:
    • 1.2 构建方法
    • 1.3 代表性验证
    • 1.4 相关实验
  • 2. 数据集下载
    • 2.1 big matrix
    • 2.1 small matrix
    • 2.3 item_feat
    • 2.4 social_network
    • 2.5 注意点
  • 3. 数据集处理
    • 3.1 数据集读取
    • 3.2 划分训练集测试集
    • 3.3 拼接物品属性
    • 3.4 转换成稀疏矩阵
    • 3.5 social network处理

1. 数据集介绍

在这里插入图片描述
滴滴滴!作者在5.16进行了更新,解决了1225物品没有交互的bug,还新增了超多特征!

KuaiRec是中科大与快手团队合作产出的一个稠密度高达99.6%(一般推荐系统公开数据集的稠密度在1%以下)的数据集。
本文将对KuaiRec的构建过程、相关实验、数据信息及处理使用方法等内容进行说明。
在这里插入图片描述
上图(b)为KuaiRec数据集,右下角的小矩阵是收集到的全曝光数据集;
通常来说,我们使用大矩阵训练,用小矩阵测试。
在这里插入图片描述
上图为属性信息,主要包含item feature社交网络两部分。

1.1 相关链接:

论文:https://arxiv.org/abs/2202.10842
数据:https://rec.ustc.edu.cn/share/598635c0-9585-11ec-8259-414ede1f8d4f
代码:https://chongminggao.github.io/KuaiRec/
Example:http://m6z.cn/5U6xyQ
作者主页:https://chongminggao.me/

1.2 构建方法

  • 所有数据均来源于2020年7月5日至2020年9月5日快手APP上的交互记录;
  • 用户和视频均带有快手平台标记的“高质量”标签
  • 对于缺失值(即用户未观看的其余视频),团队操纵在线推荐规则将这些视频强制推荐给用户,此过程持续了15天。
  • 小矩阵的密度为99.6%,而非100%,是因为有部分用户显式的屏蔽过某些视频作者,导致无法将这些视频曝光给用户。

1.3 代表性验证

  • Kolmogorov–Smirnov假设检验来验证了收集到的小矩阵中的用户与视频快手数据中的用户与视频有着同样的分布。即验证了小矩阵中的用户和视频具有代表性。

1.4 相关实验

作者选择用这个数据集来探究对话推荐系统中的一些关键问题,包括两方面:

  1. 首先,部分观察到的数据(有偏差和无偏差)如何影响 CRS 的评估
  2. 我们能否通过估计缺失值(即矩阵补全)来改进对部分观测数据的评估

除此之外,作者还探究了两个因素在评估中的影响

  1. 观测数据的密度:从全曝光小矩阵中采样出不同密度的数据,使得观测密度在区间:{10%,20%,…, 100%}中。
  2. 曝光偏差的种类:通过随机性采样,基于流行商品的采样,以及基于正样本的采样,分别用以模拟部分曝光中的无偏数据、流行偏差、以及正样本偏差。

2. 数据集下载

数据下载链接:https://rec.ustc.edu.cn/share/598635c0-9585-11ec-8259-414ede1f8d4f
下载并解压数据集后,data文件夹中保存的是大矩阵和小矩阵,以及属性信息。

2.1 big matrix

big matrix:即图(b)中的蓝色部分,包含了7176名用户对10729个视频的12530806条交互记录,density为13.4%
在这里插入图片描述

2.1 small matrix

small matrix:即图(b)中的红色部分,包含了1411名用户对3327个视频的4676570条交互记录,density为99.6%.
在这里插入图片描述

2.3 item_feat

item_feat:每个视频最多包含4个tags(如体育、游戏…),共有31种tags。
在这里插入图片描述

2.4 social_network

social_network: 用户社交网络数据;小矩阵中共有146名用户有社交关系,大矩阵中共有472名用户有社交关系。
在这里插入图片描述


loaddata.pyStatistic_KuaiRec.ipynb都是作者提供的加载数据集的代码
在这里插入图片描述

2.5 注意点

1.(最新版本的数据集已经修复这个bug啦) video_id = 1225是空缺值,这个video不存在任何交互记录~,处理时需要注意一下
如,负采样时:

        neg = item + 1while neg <= max_item:if neg == 1225:  # 1225 is an absent video_idneg = 1226

3. 数据集处理

3.1 数据集读取

  1. filePath改成数据集路径
filePath= "../environments/KuaishouRec/data/big_matrix.csv" # 写自己的路径
df_big = pd.read_csv(filePath)

注意一下,图中的photo_id就是csv文件中的video_id~(我下载的是老版本数据,当时还没有修改列名)
在这里插入图片描述

  1. 指定读取列,如只需要u,i,r数据:
df_big = pd.read_csv(filePath, usecols=['user_id', 'photo_id',  'watch_ratio'])

在这里插入图片描述

3.2 划分训练集测试集

因为作者给出的是一个大数据集,并没有划分训练集和测试集,需要我们自己划分;调用sklearn.model_selection import train_test_split库就可以轻松划分了。

from sklearn.model_selection import train_test_split
import os
import pandas as pdDATAPATH = "../environments/KuaishouRec/data"
filePath = os.path.join(DATAPATH, "big_matrix.csv")
trainpath = os.path.join(DATAPATH, "train_big_matrix.csv")
testpath = os.path.join(DATAPATH, "test_big_matrix.csv")# 开始读取
df_big = pd.read_csv(filePath, usecols=['user_id', 'video_id',  'watch_ratio'])
# watch_ratio控制范围
df_big.loc[df_big['watch_ratio'] > 5, 'watch_ratio'] = 5
x_train,x_test=train_test_split(df_big,test_size=0.2,random_state=2022)x_train.sort_values("user_id", inplace=True)
x_test.sort_values("user_id", inplace=True)# save
x_train.to_csv(trainpath, index=False)
x_test.to_csv(testpath, index=False)print("split dataset completed")

3.3 拼接物品属性

  1. 先读取item feature,维度为 item_num*2
 data_feat = pd.read_csv(os.path.join(DATAPATH, 'item_feat.csv'))print("number of items:", len(data_feat))
  1. 我们想转换成 item_num*4,因为每个物品最多有4个tag;因此建立一个列表list_feat,再将物品feature读进去;最后将其转换为dataframe结构。
    data_feat = pd.read_csv(os.path.join(DATAPATH, 'item_feat.csv'))print("number of items:", len(data_feat))list_feat = [0] * len(data_feat)for i in range(len(data_feat)):list_feat[i] = data_feat[str(i)]['feature_index']df_feat = pd.DataFrame(list_feat, columns=['feat0', 'feat1', 'feat2', 'feat3'], dtype=int)
  1. 这里要注意一下缺失值处理哦!因为本身就有feature0,因此我们将NAN的feature置为-1,最后再统一加一。
    df_feat.index.name = "video_id"# 本身就有feature=0的值,所以设置为-1,再整体加一df_feat[df_feat.isna()] = -1df_feat = df_feat + 1df_feat = df_feat.astype(int)

在这里插入图片描述
4. 最后我们将物品属性矩阵与大矩阵组合起来:

    # 把大矩阵和item特征组合起来df_big = df_big.join(df_feat, on=['video_id'], how="left")df_big.loc[df_big['watch_ratio'] > 5, 'watch_ratio'] = 5user_features = ["user_id"]item_features = ["video_id"] + ["feat" + str(i) for i in range(4)] + ["photo_duration"]reward_features = ["watch_ratio"]

3.4 转换成稀疏矩阵

这部分是将大矩阵处理成(u,i,r)形式。

  1. 首先将video_id user_id转成离散形式
lbe_video = LabelEncoder() # 弄成离散的
lbe_video.fit(df_big['video_id'].unique())lbe_user = LabelEncoder()
lbe_user.fit(df_big['user_id'].unique())
  1. 利用csr_matrix进行转化
 # 类似(u,i,r)mat = csr_matrix((df_big ['watch_ratio'],(lbe_user.transform(df_big ['user_id']), lbe_photo.transform(df_big ['video_id']))),shape=(df_big ['user_id'].nunique(), df_big ['video_id'].nunique())).toarray()

3.5 social network处理

以下代码是将用户社交网络处理为稀疏矩阵:

    def construct_social_mat(self):print("loading social networks...")trustNet = pd.read_csv(os.path.join(DATAPATH, 'social_network.csv'))trust_dict = dict(zip(trustNet['user_id'], trustNet['friend_list']))socialNet = sp.dok_matrix((self.n_users, self.n_users), dtype=np.int8)for user_id, friend_ids in trust_dict.items():friend_ids = friend_ids.strip('[').strip(']').split(',')for friend_id in friend_ids:socialNet[user_id, int(friend_id)] = 1return socialNet.tolil()

这篇关于中科大何向南团队+快手App联合出品 KuaiRec | 快手首个稠密为99.6%的数据集 | 相关介绍、下载、处理、使用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/685746

相关文章

Pydantic中Optional 和Union类型的使用

《Pydantic中Optional和Union类型的使用》本文主要介绍了Pydantic中Optional和Union类型的使用,这两者在处理可选字段和多类型字段时尤为重要,文中通过示例代码介绍的... 目录简介Optional 类型Union 类型Optional 和 Union 的组合总结简介Pyd

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

Spring Security方法级安全控制@PreAuthorize注解的灵活运用小结

《SpringSecurity方法级安全控制@PreAuthorize注解的灵活运用小结》本文将带着大家讲解@PreAuthorize注解的核心原理、SpEL表达式机制,并通过的示例代码演示如... 目录1. 前言2. @PreAuthorize 注解简介3. @PreAuthorize 核心原理解析拦截与

一文详解JavaScript中的fetch方法

《一文详解JavaScript中的fetch方法》fetch函数是一个用于在JavaScript中执行HTTP请求的现代API,它提供了一种更简洁、更强大的方式来处理网络请求,:本文主要介绍Jav... 目录前言什么是 fetch 方法基本语法简单的 GET 请求示例代码解释发送 POST 请求示例代码解释

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro