中科大何向南团队+快手App联合出品 KuaiRec | 快手首个稠密为99.6%的数据集 | 相关介绍、下载、处理、使用方法

本文主要是介绍中科大何向南团队+快手App联合出品 KuaiRec | 快手首个稠密为99.6%的数据集 | 相关介绍、下载、处理、使用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 数据集介绍
    • 1.1 相关链接:
    • 1.2 构建方法
    • 1.3 代表性验证
    • 1.4 相关实验
  • 2. 数据集下载
    • 2.1 big matrix
    • 2.1 small matrix
    • 2.3 item_feat
    • 2.4 social_network
    • 2.5 注意点
  • 3. 数据集处理
    • 3.1 数据集读取
    • 3.2 划分训练集测试集
    • 3.3 拼接物品属性
    • 3.4 转换成稀疏矩阵
    • 3.5 social network处理

1. 数据集介绍

在这里插入图片描述
滴滴滴!作者在5.16进行了更新,解决了1225物品没有交互的bug,还新增了超多特征!

KuaiRec是中科大与快手团队合作产出的一个稠密度高达99.6%(一般推荐系统公开数据集的稠密度在1%以下)的数据集。
本文将对KuaiRec的构建过程、相关实验、数据信息及处理使用方法等内容进行说明。
在这里插入图片描述
上图(b)为KuaiRec数据集,右下角的小矩阵是收集到的全曝光数据集;
通常来说,我们使用大矩阵训练,用小矩阵测试。
在这里插入图片描述
上图为属性信息,主要包含item feature社交网络两部分。

1.1 相关链接:

论文:https://arxiv.org/abs/2202.10842
数据:https://rec.ustc.edu.cn/share/598635c0-9585-11ec-8259-414ede1f8d4f
代码:https://chongminggao.github.io/KuaiRec/
Example:http://m6z.cn/5U6xyQ
作者主页:https://chongminggao.me/

1.2 构建方法

  • 所有数据均来源于2020年7月5日至2020年9月5日快手APP上的交互记录;
  • 用户和视频均带有快手平台标记的“高质量”标签
  • 对于缺失值(即用户未观看的其余视频),团队操纵在线推荐规则将这些视频强制推荐给用户,此过程持续了15天。
  • 小矩阵的密度为99.6%,而非100%,是因为有部分用户显式的屏蔽过某些视频作者,导致无法将这些视频曝光给用户。

1.3 代表性验证

  • Kolmogorov–Smirnov假设检验来验证了收集到的小矩阵中的用户与视频快手数据中的用户与视频有着同样的分布。即验证了小矩阵中的用户和视频具有代表性。

1.4 相关实验

作者选择用这个数据集来探究对话推荐系统中的一些关键问题,包括两方面:

  1. 首先,部分观察到的数据(有偏差和无偏差)如何影响 CRS 的评估
  2. 我们能否通过估计缺失值(即矩阵补全)来改进对部分观测数据的评估

除此之外,作者还探究了两个因素在评估中的影响

  1. 观测数据的密度:从全曝光小矩阵中采样出不同密度的数据,使得观测密度在区间:{10%,20%,…, 100%}中。
  2. 曝光偏差的种类:通过随机性采样,基于流行商品的采样,以及基于正样本的采样,分别用以模拟部分曝光中的无偏数据、流行偏差、以及正样本偏差。

2. 数据集下载

数据下载链接:https://rec.ustc.edu.cn/share/598635c0-9585-11ec-8259-414ede1f8d4f
下载并解压数据集后,data文件夹中保存的是大矩阵和小矩阵,以及属性信息。

2.1 big matrix

big matrix:即图(b)中的蓝色部分,包含了7176名用户对10729个视频的12530806条交互记录,density为13.4%
在这里插入图片描述

2.1 small matrix

small matrix:即图(b)中的红色部分,包含了1411名用户对3327个视频的4676570条交互记录,density为99.6%.
在这里插入图片描述

2.3 item_feat

item_feat:每个视频最多包含4个tags(如体育、游戏…),共有31种tags。
在这里插入图片描述

2.4 social_network

social_network: 用户社交网络数据;小矩阵中共有146名用户有社交关系,大矩阵中共有472名用户有社交关系。
在这里插入图片描述


loaddata.pyStatistic_KuaiRec.ipynb都是作者提供的加载数据集的代码
在这里插入图片描述

2.5 注意点

1.(最新版本的数据集已经修复这个bug啦) video_id = 1225是空缺值,这个video不存在任何交互记录~,处理时需要注意一下
如,负采样时:

        neg = item + 1while neg <= max_item:if neg == 1225:  # 1225 is an absent video_idneg = 1226

3. 数据集处理

3.1 数据集读取

  1. filePath改成数据集路径
filePath= "../environments/KuaishouRec/data/big_matrix.csv" # 写自己的路径
df_big = pd.read_csv(filePath)

注意一下,图中的photo_id就是csv文件中的video_id~(我下载的是老版本数据,当时还没有修改列名)
在这里插入图片描述

  1. 指定读取列,如只需要u,i,r数据:
df_big = pd.read_csv(filePath, usecols=['user_id', 'photo_id',  'watch_ratio'])

在这里插入图片描述

3.2 划分训练集测试集

因为作者给出的是一个大数据集,并没有划分训练集和测试集,需要我们自己划分;调用sklearn.model_selection import train_test_split库就可以轻松划分了。

from sklearn.model_selection import train_test_split
import os
import pandas as pdDATAPATH = "../environments/KuaishouRec/data"
filePath = os.path.join(DATAPATH, "big_matrix.csv")
trainpath = os.path.join(DATAPATH, "train_big_matrix.csv")
testpath = os.path.join(DATAPATH, "test_big_matrix.csv")# 开始读取
df_big = pd.read_csv(filePath, usecols=['user_id', 'video_id',  'watch_ratio'])
# watch_ratio控制范围
df_big.loc[df_big['watch_ratio'] > 5, 'watch_ratio'] = 5
x_train,x_test=train_test_split(df_big,test_size=0.2,random_state=2022)x_train.sort_values("user_id", inplace=True)
x_test.sort_values("user_id", inplace=True)# save
x_train.to_csv(trainpath, index=False)
x_test.to_csv(testpath, index=False)print("split dataset completed")

3.3 拼接物品属性

  1. 先读取item feature,维度为 item_num*2
 data_feat = pd.read_csv(os.path.join(DATAPATH, 'item_feat.csv'))print("number of items:", len(data_feat))
  1. 我们想转换成 item_num*4,因为每个物品最多有4个tag;因此建立一个列表list_feat,再将物品feature读进去;最后将其转换为dataframe结构。
    data_feat = pd.read_csv(os.path.join(DATAPATH, 'item_feat.csv'))print("number of items:", len(data_feat))list_feat = [0] * len(data_feat)for i in range(len(data_feat)):list_feat[i] = data_feat[str(i)]['feature_index']df_feat = pd.DataFrame(list_feat, columns=['feat0', 'feat1', 'feat2', 'feat3'], dtype=int)
  1. 这里要注意一下缺失值处理哦!因为本身就有feature0,因此我们将NAN的feature置为-1,最后再统一加一。
    df_feat.index.name = "video_id"# 本身就有feature=0的值,所以设置为-1,再整体加一df_feat[df_feat.isna()] = -1df_feat = df_feat + 1df_feat = df_feat.astype(int)

在这里插入图片描述
4. 最后我们将物品属性矩阵与大矩阵组合起来:

    # 把大矩阵和item特征组合起来df_big = df_big.join(df_feat, on=['video_id'], how="left")df_big.loc[df_big['watch_ratio'] > 5, 'watch_ratio'] = 5user_features = ["user_id"]item_features = ["video_id"] + ["feat" + str(i) for i in range(4)] + ["photo_duration"]reward_features = ["watch_ratio"]

3.4 转换成稀疏矩阵

这部分是将大矩阵处理成(u,i,r)形式。

  1. 首先将video_id user_id转成离散形式
lbe_video = LabelEncoder() # 弄成离散的
lbe_video.fit(df_big['video_id'].unique())lbe_user = LabelEncoder()
lbe_user.fit(df_big['user_id'].unique())
  1. 利用csr_matrix进行转化
 # 类似(u,i,r)mat = csr_matrix((df_big ['watch_ratio'],(lbe_user.transform(df_big ['user_id']), lbe_photo.transform(df_big ['video_id']))),shape=(df_big ['user_id'].nunique(), df_big ['video_id'].nunique())).toarray()

3.5 social network处理

以下代码是将用户社交网络处理为稀疏矩阵:

    def construct_social_mat(self):print("loading social networks...")trustNet = pd.read_csv(os.path.join(DATAPATH, 'social_network.csv'))trust_dict = dict(zip(trustNet['user_id'], trustNet['friend_list']))socialNet = sp.dok_matrix((self.n_users, self.n_users), dtype=np.int8)for user_id, friend_ids in trust_dict.items():friend_ids = friend_ids.strip('[').strip(']').split(',')for friend_id in friend_ids:socialNet[user_id, int(friend_id)] = 1return socialNet.tolil()

这篇关于中科大何向南团队+快手App联合出品 KuaiRec | 快手首个稠密为99.6%的数据集 | 相关介绍、下载、处理、使用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/685746

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd