挑战杯 python+opencv+机器学习车牌识别

2024-02-06 15:36

本文主要是介绍挑战杯 python+opencv+机器学习车牌识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于机器学习的车牌识别系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题介绍

1.1 系统简介

车牌识别这个系统,虽然传统,古老,却是包含了所有这四个特侦的一个大数据技术的缩影.

在车牌识别中,你需要处理的数据是图像中海量的像素单元;你处理的数据不再是传统的结构化数据,而是图像这种复杂的数据;如果不能在很短的时间内识别出车牌,那么系统就缺少意义;虽然一副图像中有很多的信息,但可能仅仅只有那一小块的信息(车牌)以及车身的颜色是你关心,而且这些信息都蕴含着巨大的价值。也就是说,车牌识别系统事实上就是现在火热的大数据技术在某个领域的一个聚焦,通过了解车牌识别系统,可以很好的帮助你理解大数据技术的内涵,也能清楚的认识到大数据的价值。

1.2 系统要求

  • 它基于openCV这个开源库,这意味着所有它的代码都可以轻易的获取。
  • 它能够识别中文,例如车牌为苏EUK722的图片,它可以准确地输出std:string类型的"苏EUK722"的结果。
  • 它的识别率较高。目前情况下,字符识别已经可以达到90%以上的精度。

1.3 系统架构

整体包含两个系统:

  • 车牌检测
  • 车牌字体识别(中文 + 数字 + 英文)

整体架构如下:
在这里插入图片描述

2 实现方式

2.1 车牌检测技术

车牌检测(Plate Detection):

对一个包含车牌的图像进行分析,最终截取出只包含车牌的一个图块。这个步骤的主要目的是降低了在车牌识别过程中的计算量。如果直接对原始的图像进行车牌识别,会非常的慢,因此需要检测的过程。在本系统中,我们使用SVM(支持向量机)这个机器学习算法去判别截取的图块是否是真的“车牌”。

车牌检测这里不详细说明, 只贴出opencv图像处理流程, 需要代码的可以留下邮箱

在这里插入图片描述
使用到的图像处理算法

  • 高斯模糊
  • 灰度化处理
  • Sobel算子(边缘检测)
  • 开操作
  • 闭操作
  • 仿射变换
  • 霍姆线性检测
  • 角度矫正

2.2 车牌识别技术

字符识别(Chars Recognition):

有的书上也叫Plate
Recognition,我为了与整个系统的名称做区分,所以改为此名字。这个步骤的主要目的就是从上一个车牌检测步骤中获取到的车牌图像,进行光学字符识别(OCR)这个过程。其中用到的机器学习算法是著名的人工神经网络(ANN)中的多层感知机(MLP)模型。最近一段时间非常火的“深度学习”其实就是多隐层的人工神经网络,与其有非常紧密的联系。通过了解光学字符识别(OCR)这个过程,也可以知晓深度学习所基于的人工神经网路技术的一些内容。

我们这里使用深度学习的方式来对车牌字符进行识别, 为什么不用传统的机器学习进行识别呢, 看图就知道了:
在这里插入图片描述
图2 深度学习(右)与PCA技术(左)的对比
可以看出深度学习对于数据的分类能力的优势。

这里博主使用生成对抗网络进行字符识别训练, 效果相当不错, 识别精度达到了98%

在这里插入图片描述

2.3 SVM识别字符

定义

    class SVM(StatModel):def __init__(self, C = 1, gamma = 0.5):self.model = cv2.ml.SVM_create()self.model.setGamma(gamma)self.model.setC(C)self.model.setKernel(cv2.ml.SVM_RBF)self.model.setType(cv2.ml.SVM_C_SVC)#训练svmdef train(self, samples, responses):self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)

调用方法,喂数据

    def train_svm(self):#识别英文字母和数字self.model = SVM(C=1, gamma=0.5)#识别中文self.modelchinese = SVM(C=1, gamma=0.5)if os.path.exists("svm.dat"):self.model.load("svm.dat")

训练,保存模型

else:
​    			chars_train = []
​    			chars_label = []for root, dirs, files in os.walk("train\\chars2"):if len(os.path.basename(root)) > 1:continueroot_int = ord(os.path.basename(root))for filename in files:filepath = os.path.join(root,filename)digit_img = cv2.imread(filepath)digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)chars_train.append(digit_img)#chars_label.append(1)chars_label.append(root_int)chars_train = list(map(deskew, chars_train))chars_train = preprocess_hog(chars_train)#chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)chars_label = np.array(chars_label)print(chars_train.shape)self.model.train(chars_train, chars_label)

车牌字符数据集如下

在这里插入图片描述
在这里插入图片描述

这些是字母的训练数据,同样的还有我们车牌的省份简写:

在这里插入图片描述

在这里插入图片描述

核心代码

   predict_result = []roi = Nonecard_color = Nonefor i, color in enumerate(colors):if color in ("blue", "yello", "green"):card_img = card_imgs[i]gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)#黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向if color == "green" or color == "yello":gray_img = cv2.bitwise_not(gray_img)ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)#查找水平直方图波峰x_histogram  = np.sum(gray_img, axis=1)x_min = np.min(x_histogram)x_average = np.sum(x_histogram)/x_histogram.shape[0]x_threshold = (x_min + x_average)/2wave_peaks = find_waves(x_threshold, x_histogram)if len(wave_peaks) == 0:print("peak less 0:")continue#认为水平方向,最大的波峰为车牌区域wave = max(wave_peaks, key=lambda x:x[1]-x[0])gray_img = gray_img[wave[0]:wave[1]]#查找垂直直方图波峰row_num, col_num= gray_img.shape[:2]#去掉车牌上下边缘1个像素,避免白边影响阈值判断gray_img = gray_img[1:row_num-1]y_histogram = np.sum(gray_img, axis=0)y_min = np.min(y_histogram)y_average = np.sum(y_histogram)/y_histogram.shape[0]y_threshold = (y_min + y_average)/5#U和0要求阈值偏小,否则U和0会被分成两半wave_peaks = find_waves(y_threshold, y_histogram)#for wave in wave_peaks:#	cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2) #车牌字符数应大于6if len(wave_peaks) <= 6:print("peak less 1:", len(wave_peaks))continuewave = max(wave_peaks, key=lambda x:x[1]-x[0])max_wave_dis = wave[1] - wave[0]#判断是否是左侧车牌边缘if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis/3 and wave_peaks[0][0] == 0:wave_peaks.pop(0)#组合分离汉字cur_dis = 0for i,wave in enumerate(wave_peaks):if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:breakelse:cur_dis += wave[1] - wave[0]if i > 0:wave = (wave_peaks[0][0], wave_peaks[i][1])wave_peaks = wave_peaks[i+1:]wave_peaks.insert(0, wave)#去除车牌上的分隔点point = wave_peaks[2]if point[1] - point[0] < max_wave_dis/3:point_img = gray_img[:,point[0]:point[1]]if np.mean(point_img) < 255/5:wave_peaks.pop(2)if len(wave_peaks) <= 6:print("peak less 2:", len(wave_peaks))continuepart_cards = seperate_card(gray_img, wave_peaks)for i, part_card in enumerate(part_cards):#可能是固定车牌的铆钉if np.mean(part_card) < 255/5:print("a point")continuepart_card_old = part_cardw = abs(part_card.shape[1] - SZ)//2part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value = [0,0,0])part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)#part_card = deskew(part_card)part_card = preprocess_hog([part_card])if i == 0:resp = self.modelchinese.predict(part_card)charactor = provinces[int(resp[0]) - PROVINCE_START]else:resp = self.model.predict(part_card)charactor = chr(resp[0])#判断最后一个数是否是车牌边缘,假设车牌边缘被认为是1if charactor == "1" and i == len(part_cards)-1:if part_card_old.shape[0]/part_card_old.shape[1] >= 7:#1太细,认为是边缘continuepredict_result.append(charactor)roi = card_imgcard_color = colorbreakreturn predict_result, roi, card_color#识别到的字符、定位的车牌图像、车牌颜色

2.4 最终效果

最后算法部分可以和你想要的任何UI配置到一起:

可以这样 :
在这里插入图片描述

也可以这样:
在这里插入图片描述

甚至更加复杂一点:
在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

这篇关于挑战杯 python+opencv+机器学习车牌识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684767

相关文章

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相