SFLA混合蛙跳算法的理解

2024-02-06 11:50
文章标签 算法 理解 混合 蛙跳 sfla

本文主要是介绍SFLA混合蛙跳算法的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题概念

蛙跳算法的思想是:在一片湿地中生活着一群青蛙。湿地内离散的分布着许多石头,青蛙通过寻找不同的石头进行跳跃去找到食物较多的地方。每只青蛙个体之间通过文化的交流实现信息的交换。每只青蛙都具有自己的文化。每只青蛙的文化被定义为问题的一个解。湿地的整个青蛙群体被分为不同的子群体,每个子群体有着自己的文化,执行局部搜索策略。在子群体中的每个个体有着自己的文化,并且影响着其他个体,也受其他个体的影响,并随着子群体的进化而进化。当子群体进化到一定阶段以后,各个子群体之间再进行思想的交流(全局信息交换)实现子群体间的混合运算,一直到所设置的条件满足为止。

步骤

在这里插入图片描述
在这里插入图片描述
声明:以下步骤都是引用C++ 遗传学SFLA混合蛙跳算法这个老哥的。

  1. 生成蛙群,每只蛙个体包括基因维数数组以及价值(适应度)
  2. 对青蛙划分等级。将青蛙按照性能的好坏依次排列,生成数组:记录最好青蛙pg,同时对其进行分组(将数组group分成为m个memeplex)
  • 设定最大进化次数N,iN=0为进化次数变量,子群个数m,im=0为子群计数变量。在每个memeplex中Pb和Pw分别表示性能最好和最坏的青蛙,Pg表示整个种群中最好的青蛙。在每一轮的进化中,改善最坏青蛙Pw的位置。注意,并非对所有青蛙都优化。
  • 调整最坏青蛙的位置,方法如下:
    青蛙移动的距离 Di=rand()*(Pb-Pw)
    新的位置 Pw=Pw(当前位置)+Di,(Dmax>=Di>=-Dmax)
    其中rand()是0-1之间的随机数,Dmax是青蛙移动的最大距离。
  • 如果上述过程能够使得青蛙有一个更好的位置,即能产生一个更好的解,那么就用新的位置青蛙取代原来的青蛙;否则,用Pg代替Pb,重复上述过程。
  • 如果上述方法仍不能生成更好的青蛙,那么就随机生成一个新解取代原来最坏的青蛙Pw。
  1. 青蛙在memeplex之间跳跃。在每个memeplex中执行了一定的memetic进化之后,将各个子群合并到整体,再重新排序,并更新种群中最好的青蛙Pg
  2. 如果迭代终止条件满足,则停止;否则,继续迭代.一般情况下,当执行了一定次数的循环进化,代表最好解的青蛙的位置不再改变的时候,算法停止。

个人理解

步骤1,2都好理解,步骤3开始:
调整最坏青蛙的位置,方法如下:
青蛙移动的距离 Di=rand()*(Pb-Pw)
新的位置 Pw=Pw(当前位置)+Di,(Dmax>=Di>=-Dmax)
其中rand()是0-1之间的随机数,Dmax是青蛙移动的最大距离。
如果上述过程能够使得青蛙有一个更好的位置,即能产生一个更好的解,那么就用新的位置青蛙取代原来的青蛙;否则,用Pg代替Pb,重复上述过程
如果上述方法仍不能生成更好的青蛙,那么就随机生成一个新解取代原来最坏的青蛙Pw

这其实可以理解为,对最差的青蛙进行进化,以谁为目标呢,这个小组内最好的那只青蛙,如果能进步,那就是一只有进步的青蛙;如果不能进步,那就考虑给它换个目标,可能当前的目标有问题,发展的模板不对;如果还不能进步,那就是这只青蛙的问题,就换一只青蛙进行进化。
步骤4,5好理解就不说了。

参考文献

C++ 遗传学SFLA混合蛙跳算法
matlab代码

这篇关于SFLA混合蛙跳算法的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684221

相关文章

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.