SFLA混合蛙跳算法的理解

2024-02-06 11:50
文章标签 算法 理解 混合 蛙跳 sfla

本文主要是介绍SFLA混合蛙跳算法的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题概念

蛙跳算法的思想是:在一片湿地中生活着一群青蛙。湿地内离散的分布着许多石头,青蛙通过寻找不同的石头进行跳跃去找到食物较多的地方。每只青蛙个体之间通过文化的交流实现信息的交换。每只青蛙都具有自己的文化。每只青蛙的文化被定义为问题的一个解。湿地的整个青蛙群体被分为不同的子群体,每个子群体有着自己的文化,执行局部搜索策略。在子群体中的每个个体有着自己的文化,并且影响着其他个体,也受其他个体的影响,并随着子群体的进化而进化。当子群体进化到一定阶段以后,各个子群体之间再进行思想的交流(全局信息交换)实现子群体间的混合运算,一直到所设置的条件满足为止。

步骤

在这里插入图片描述
在这里插入图片描述
声明:以下步骤都是引用C++ 遗传学SFLA混合蛙跳算法这个老哥的。

  1. 生成蛙群,每只蛙个体包括基因维数数组以及价值(适应度)
  2. 对青蛙划分等级。将青蛙按照性能的好坏依次排列,生成数组:记录最好青蛙pg,同时对其进行分组(将数组group分成为m个memeplex)
  • 设定最大进化次数N,iN=0为进化次数变量,子群个数m,im=0为子群计数变量。在每个memeplex中Pb和Pw分别表示性能最好和最坏的青蛙,Pg表示整个种群中最好的青蛙。在每一轮的进化中,改善最坏青蛙Pw的位置。注意,并非对所有青蛙都优化。
  • 调整最坏青蛙的位置,方法如下:
    青蛙移动的距离 Di=rand()*(Pb-Pw)
    新的位置 Pw=Pw(当前位置)+Di,(Dmax>=Di>=-Dmax)
    其中rand()是0-1之间的随机数,Dmax是青蛙移动的最大距离。
  • 如果上述过程能够使得青蛙有一个更好的位置,即能产生一个更好的解,那么就用新的位置青蛙取代原来的青蛙;否则,用Pg代替Pb,重复上述过程。
  • 如果上述方法仍不能生成更好的青蛙,那么就随机生成一个新解取代原来最坏的青蛙Pw。
  1. 青蛙在memeplex之间跳跃。在每个memeplex中执行了一定的memetic进化之后,将各个子群合并到整体,再重新排序,并更新种群中最好的青蛙Pg
  2. 如果迭代终止条件满足,则停止;否则,继续迭代.一般情况下,当执行了一定次数的循环进化,代表最好解的青蛙的位置不再改变的时候,算法停止。

个人理解

步骤1,2都好理解,步骤3开始:
调整最坏青蛙的位置,方法如下:
青蛙移动的距离 Di=rand()*(Pb-Pw)
新的位置 Pw=Pw(当前位置)+Di,(Dmax>=Di>=-Dmax)
其中rand()是0-1之间的随机数,Dmax是青蛙移动的最大距离。
如果上述过程能够使得青蛙有一个更好的位置,即能产生一个更好的解,那么就用新的位置青蛙取代原来的青蛙;否则,用Pg代替Pb,重复上述过程
如果上述方法仍不能生成更好的青蛙,那么就随机生成一个新解取代原来最坏的青蛙Pw

这其实可以理解为,对最差的青蛙进行进化,以谁为目标呢,这个小组内最好的那只青蛙,如果能进步,那就是一只有进步的青蛙;如果不能进步,那就考虑给它换个目标,可能当前的目标有问题,发展的模板不对;如果还不能进步,那就是这只青蛙的问题,就换一只青蛙进行进化。
步骤4,5好理解就不说了。

参考文献

C++ 遗传学SFLA混合蛙跳算法
matlab代码

这篇关于SFLA混合蛙跳算法的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684221

相关文章

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.