2021年9月8日,完美解决selenium自动处理滑块问题方案,只有想不到没有做不到!

本文主要是介绍2021年9月8日,完美解决selenium自动处理滑块问题方案,只有想不到没有做不到!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.有一天我需要使用自动化填写表单,但是,当我保存时,碰到了滑块,只能自己手动滑动,我自己心有不甘,决定自己破解它,不破解自动验证滑块成功誓不罢休,于是我开始思考。。。
(注:大家可以自己寻找一个需要通过滑块验证的网站,此方法适用于所有的滑块验证网站)
在这里插入图片描述

2.思路:首先使用selenium截全屏,然后使用selenium定位图片标签获取x,y,w,h,通过宽高截屏滑块图片,同时识别滑块缺口,识别缺口后获得缺口的横向坐标,然后使用selenium拖动滑块匀速从左向右滑动到达位置,即成功,识别效果百分之80以上。

3.主要问题有两个,一是如何定位到滑块页面,二是如何识别滑块缺口并且返回横坐标x

4.如何定位到滑块页面,主要可能需要进如iframe页面,大家可以详细搜一下如何进入和退出iframe页面的方法

5.如何识别滑块缺口并且返回横坐标x,我们首先需要一个缺口的图片作为对照,之后每次获取的背景图可根据缺口进行识别,使用此识别方式识别较为准确

背景图片
背景图片
缺口图片
在这里插入图片描述
识别滑块缺口代码展示

def identify(bg, tp, out):# 读取背景图片和缺口图片bg_img = cv2.imread(bg)  # 背景图片tp_img = cv2.imread(tp)  # 缺口图片# 识别图片边缘bg_edge = cv2.Canny(bg_img, 100, 200)tp_edge = cv2.Canny(tp_img, 100, 200)# 转换图片格式bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)# 缺口匹配res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  # 寻找最优匹配# 绘制方框th, tw = tp_pic.shape[:2]tl = max_loc  # 左上角点的坐标br = (tl[0] + tw, tl[1] + th)  # 右下角点的坐标cv2.rectangle(bg_img, tl, br, (0, 0, 255), 2)  # 绘制矩形cv2.imwrite(out, bg_img)  # 保存在本地print(tl[0])# 返回缺口的X坐标return tl[0]

3.完整代码展示
在这里插入图片描述

from selenium import webdriver
from selenium.webdriver import ActionChains
import time
import cv2
def identify_gap(bg, tp, out):'''bg: 背景图片tp: 缺口图片out:输出图片'''# 读取背景图片和缺口图片bg_img = cv2.imread(bg)  # 背景图片tp_img = cv2.imread(tp)  # 缺口图片# 识别图片边缘bg_edge = cv2.Canny(bg_img, 100, 200)tp_edge = cv2.Canny(tp_img, 100, 200)# 转换图片格式bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)# 缺口匹配res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  # 寻找最优匹配# 绘制方框th, tw = tp_pic.shape[:2]tl = max_loc  # 左上角点的坐标br = (tl[0] + tw, tl[1] + th)  # 右下角点的坐标cv2.rectangle(bg_img, tl, br, (0, 0, 255), 2)  # 绘制矩形cv2.imwrite(out, bg_img)  # 保存在本地print(tl[0])# 返回缺口的X坐标return tl[0]
# identify_gap("result1.png","result2.png","1.png")
chome_option=webdriver.ChromeOptions()
driver=webdriver.Chrome()
driver.get("https://spcjsample.gsxt.gov.cn/index.php?m=Admin&c=Sample&a=receiveOrEditSample&oper_type=receive&sample_code=XC21320115216735911")
driver.maximize_window()
driver.find_element_by_xpath('//*[@id="formReceiveSample"]/div[2]/span').click()
time.sleep(3)
source=driver.find_element_by_xpath('//*[@id="tncode_div"]/div[5]/div[1]')
print(source.location['x'])
time.sleep(2)
ActionChains(driver).click_and_hold(source).perform()
driver.save_screenshot('result.png')
im = cv2.imread('result.png')
im = im[342:495,858:1075]
cv2.imwrite('result1.png',im)
distance = identify_gap("result1.png","result2.png","1.png")+30
i = 0
while i <= distance:ActionChains(driver).move_by_offset(2,0).perform()i += 2
ActionChains(driver).release().perform()
time.sleep(3)
driver.quit()

4.改良后适配不同窗口代码
在这里插入图片描述
在这里插入图片描述

from selenium import webdriver
from selenium.webdriver import ActionChains
import time
import cv2
def identify_gap(bg, tp, out):'''bg: 背景图片tp: 缺口图片out:输出图片'''# 读取背景图片和缺口图片bg_img = cv2.imread(bg)  # 背景图片tp_img = cv2.imread(tp)  # 缺口图片# 识别图片边缘bg_edge = cv2.Canny(bg_img, 100, 200)tp_edge = cv2.Canny(tp_img, 100, 200)# 转换图片格式bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)# 缺口匹配res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  # 寻找最优匹配# 绘制方框th, tw = tp_pic.shape[:2]tl = max_loc  # 左上角点的坐标br = (tl[0] + tw, tl[1] + th)  # 右下角点的坐标cv2.rectangle(bg_img, tl, br, (0, 0, 255), 2)  # 绘制矩形cv2.imwrite(out, bg_img)  # 保存在本地print(tl[0])# 返回缺口的X坐标return tl[0]
# identify_gap("result1.png","result2.png","1.png")
chome_option=webdriver.ChromeOptions()
driver=webdriver.Chrome()
driver.get("https://spcjsample.gsxt.gov.cn/index.php?m=Admin&c=Sample&a=receiveOrEditSample&oper_type=receive&sample_code=XC21320115216735911")
driver.maximize_window()
driver.find_element_by_xpath('//*[@id="formReceiveSample"]/div[2]/span').click()
time.sleep(3)
source=driver.find_element_by_xpath('//*[@id="tncode_div"]/div[5]/div[1]')
target=driver.find_element_by_xpath('//*[@id="tncode_div"]/canvas[2]')
time.sleep(2)
ActionChains(driver).click_and_hold(source).perform()
driver.save_screenshot('result.png')
im = cv2.imread('result.png')
# im = im[342:495,858:1075]
sp = im.shape
sz1 = sp[0]
sz2 = sp[1]
sz3 = sp[2]
im = im[(int(sz1)//2-119):(int(sz1)//2+31),(int(sz2)//2-130):(int(sz2)//2+115)]
cv2.imwrite('result1.png',im)
distance = identify_gap("result1.png","result2.png","1.png")+4
i = 0
while i <= distance:ActionChains(driver).move_by_offset(4,0).perform()i += 4
ActionChains(driver).release().perform()
time.sleep(3)
driver.quit()

5.改良后不需要截全屏后再截图,直接全屏和缺口识别
在这里插入图片描述

在这里插入图片描述

from selenium import webdriver
from selenium.webdriver import ActionChains
import time
import cv2
def identify_gap(bg, tp, out):'''bg: 背景图片tp: 缺口图片out:输出图片'''# 读取背景图片和缺口图片bg_img = cv2.imread(bg)  # 背景图片tp_img = cv2.imread(tp)  # 缺口图片# 识别图片边缘bg_edge = cv2.Canny(bg_img, 100, 200)tp_edge = cv2.Canny(tp_img, 100, 200)# 转换图片格式bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2RGB)tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2RGB)# 缺口匹配res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)  # 寻找最优匹配# 绘制方框th, tw = tp_pic.shape[:2]tl = max_loc  # 左上角点的坐标br = (tl[0] + tw, tl[1] + th)  # 右下角点的坐标cv2.rectangle(bg_img, tl, br, (0, 0, 255), 2)  # 绘制矩形cv2.imwrite(out, bg_img)  # 保存在本地print(tl[0])# 返回缺口的X坐标return tl[0]
# identify_gap("result1.png","result2.png","1.png")
chome_option=webdriver.ChromeOptions()
driver=webdriver.Chrome()
driver.get("https://spcjsample.gsxt.gov.cn/index.php?m=Admin&c=Sample&a=receiveOrEditSample&oper_type=receive&sample_code=XC21320115216735911")
# driver.maximize_window()
driver.find_element_by_xpath('//*[@id="formReceiveSample"]/div[2]/span').click()
time.sleep(3)
source=driver.find_element_by_xpath('//*[@id="tncode_div"]/div[5]/div[1]')
target=driver.find_element_by_xpath('//*[@id="tncode_div"]/canvas[2]')
time.sleep(2)
k=source.location['x']
print(k)
ActionChains(driver).click_and_hold(source).perform()driver.save_screenshot('result.png')#这里截全屏,截全屏后再保存,之后再截图# im = cv2.imread('result.png')
# sp = im.shape
# sz1 = sp[0]
# sz2 = sp[1]
# sz3 = sp[2]
# im = im[(int(sz1)//2-119):(int(sz1)//2+31),(int(sz2)//2-130):(int(sz2)//2+115)]
# cv2.imwrite('result1.png',im)
distance = identify_gap("result.png","result2.png","1.png")-k
print(distance)
i = 0
while i <= distance:ActionChains(driver).move_by_offset(5,0).perform()i += 5
ActionChains(driver).release().perform()
time.sleep(3)
driver.quit()

更新问题:
1.此滑块没有ifame页面,所以很方便进入,大家的滑块验证很大可能是ifame页面,如果发现自己自动点击不了的话可能就是这个问题。

2.此方法适用于所有验证滑块的情况,因为这个方法是直接识别滑块缺口的位置,然后计算需要移动的像素距离来实现的,是可变的、能够适用所有滑块验证。

3.通过测试了99次验证只有5次没有成功,没有成功的原因在于,滑块的缺口识别错误,因为识别缺口是有识别度的,这个方法的识别度大概在百分之85以上,如果你想增加精确度,那么可以提炼识别方法,识别的更准确,则验证更成功。

这篇关于2021年9月8日,完美解决selenium自动处理滑块问题方案,只有想不到没有做不到!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/682748

相关文章

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM