中文字符串模糊匹配算法|C# Levenshtein Distance

本文主要是介绍中文字符串模糊匹配算法|C# Levenshtein Distance,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

中文字符串模糊匹配算法|C# Levenshtein Distance

2010-01-06 09:08:09  

C# Levenshtein Distance
by Sam Allen - Updated November 27, 2009
You want to match approximate strings with fuzzy logic, using the Levenshtein distance algorithm. Many projects need this logic, including programs that manage prescription drugs, spell-checkers, suggestion searches and plagiarism detectors. Here we see a simple but complete implementation of this algorithm using the C# programming language.

Words:                ant, aunt
Levenshtein distance: 1
Note:                 Only 1 edit is needed.
                      The 'u' must be added at index 2.

Words:                Samantha, Sam
Levenshtein distance: 5
Note:                 The final 5 letters must be removed.

Words:                Flomax, Volmax
Levenshtein distance: 3
Note:                 The first 3 letters must be changed
                      Drug names are commonly confused.Levenshtein algorithm
First, credit goes to Vladimir Levenshtein, a Russian scientist. Here we see the C# code I adapted and optimized. It uses a two-dimensional array instead of a jagged array because the space required will only have one width and one height.

=== Program that implements the algorithm (C#) ===

using System;

/// <summary>
/// Contains approximate string matching
/// </summary>
static class LevenshteinDistance
{
    /// <summary>
    /// Compute the distance between two strings.
    /// </summary>
    public static int Compute(string s, string t)
    {
        int n = s.Length;
        int m = t.Length;
        int[,] d = new int[n + 1, m + 1];

        // Step 1
        if (n == 0)
        {
            return m;
        }

        if (m == 0)
        {
            return n;
        }

        // Step 2
        for (int i = 0; i <= n; d[i, 0] = i++)
        {
        }

        for (int j = 0; j <= m; d[0, j] = j++)
        {
        }

        // Step 3
        for (int i = 1; i <= n; i++)
        {
            //Step 4
            for (int j = 1; j <= m; j++)
            {
                // Step 5
                int cost = (t[j - 1] == s[i - 1]) ? 0 : 1;

                // Step 6
                d[i, j] = Math.Min(
                    Math.Min(d[i - 1, j] + 1, d[i, j - 1] + 1),
                    d[i - 1, j - 1] + cost);
            }
        }
        // Step 7
        return d[n, m];
    }
}

class Program
{
    static void Main()
    {
        Console.WriteLine(LevenshteinDistance.Compute("aunt", "ant"));
        Console.WriteLine(LevenshteinDistance.Compute("Sam", "Samantha"));
        Console.WriteLine(LevenshteinDistance.Compute("flomax", "volmax"));
    }
}

=== Output from the program ===

1
5
3Description. The Levenshtein method is static. This Compute method doesn't need to store state or instance data, which means you can declare it as static. This can also improve performance, avoiding callvirt instructions. You can easily verify that the above implementation is the standard version of Levenshtein by looking at one of the textbooks you were supposed to read.

Performance notes. The code I show above was adapted by me from another source, and optimized so that it is three times faster. However, there are faster variants of Levenshtein algorithms for some scenarios. [Levenshtein distance - wikipedia.org]

Static classes. This algorithm is stateless, which means it doesn't store instance data and therefore can be put in a static class. Static classes are easier to add to new projects than separate methods.

Usage
Here we see how you can call the method in your C# programs. You will often want to compare multiple strings with the Levenshtein algorithm. The example here shows how you can compare strings in a loop. We use a List of string[] arrays.

=== Program that calls Levenshtein in loop (C#) ===

static void Main()
{
    List<string[]> l = new List<string[]>
    {
        new string[]{"ant", "aunt"},
        new string[]{"Sam", "Samantha"},
        new string[]{"clozapine", "olanzapine"},
        new string[]{"flomax", "volmax"},
        new string[]{"toradol", "tramadol"},
        new string[]{"kitten", "sitting"}
    };

    foreach (string[] a in l)
    {
        int cost = Compute(a[0], a[1]);
        Console.WriteLine("{0} -> {1} = {2}",
            a[0],
            a[1],
            cost);
    }
}

=== Output of the program ===

ant -> aunt = 1
Sam -> Samantha = 5
clozapine -> olanzapine = 3
flomax -> volmax = 3
toradol -> tramadol = 3
kitten -> sitting = 3More resources
Michael Gilleland has an excellent page about the Levenshtein distance and many implementations of it, and that resource is important if you need more detailed reference. [Levenshtein Distance - merriampark.com]

Performance mistake
I found the C# version linked from merriampark.com, but I adapted that code for some big performance improvements. I changed the first statement into the second statement. The before version makes a new string copy for each single character. The after version examines characters directly, with no copy strings made, taking 75% less time to run.

=== Slow version that uses Substring ===

// It makes new strings.
cost = (t.Substring(j - 1, 1) == s.Substring(i - 1, 1) ? 0 : 1);

=== Fast version that uses chars ===

// Doesn't make new strings with Substring.
cost = (t[j - 1] == s[i - 1]) ? 0 : 1;Summary
Here we saw the famous Levenshtein Distance algorithm, adapted and optimized for the C# programming language. The author places the code here in the public domain, and encourages you to test it and improve it. This means you are free to use it anywhere you want. Use this code to implement approximate string matching. The brilliance of the algorithm is from Dr. Levenshtein, not the author of this article. [Page protected by Copyscape; do not copy.]

这篇关于中文字符串模糊匹配算法|C# Levenshtein Distance的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/682241

相关文章

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

C#下Newtonsoft.Json的具体使用

《C#下Newtonsoft.Json的具体使用》Newtonsoft.Json是一个非常流行的C#JSON序列化和反序列化库,它可以方便地将C#对象转换为JSON格式,或者将JSON数据解析为C#对... 目录安装 Newtonsoft.json基本用法1. 序列化 C# 对象为 JSON2. 反序列化

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级