环形缓冲区的实现原理(ring buffer)

2024-02-05 10:08

本文主要是介绍环形缓冲区的实现原理(ring buffer),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.chinaunix.net/uid-7491192-id-2051200.html


在通信程序中,经常使用环形缓冲区作为数据结构来存放通信中发送和接收的数据。环形缓冲区是一个先进先出的循环缓冲区,可以向通信程序提供对缓冲区的互斥访问。

1、环形缓冲区的实现原理

环形缓冲区通常有一个读指针和一个写指针。读指针指向环形缓冲区中可读的数据,写指针指向环形缓冲区中可写的缓冲区。通过移动读指针和写指针就可以实现缓冲区的数据读取和写入。在通常情况下,环形缓冲区的读用户仅仅会影响读指针,而写用户仅仅会影响写指针。如果仅仅有一个读用户和一个写用户,那么不需要添加互斥保护机制就可以保证数据的正确性。如果有多个读写用户访问环形缓冲区,那么必须添加互斥保护机制来确保多个用户互斥访问环形缓冲区。

图1、图2和图3是一个环形缓冲区的运行示意图。图1是环形缓冲区的初始状态,可以看到读指针和写指针都指向第一个缓冲区处;图2是向环形缓冲区中添加了一个数据后的情况,可以看到写指针已经移动到数据块2的位置,而读指针没有移动;图3是环形缓冲区进行了读取和添加后的状态,可以看到环形缓冲区中已经添加了两个数据,已经读取了一个数据。

 

2、实例:环形缓冲区的实现

环形缓冲区是数据通信程序中使用最为广泛的数据结构之一,下面的代码,实现了一个环形缓冲区:

/*ringbuf .c*/

#include

    #include

#define NMAX 8

int iput = 0; /* 环形缓冲区的当前放入位置 */

int iget = 0; /* 缓冲区的当前取出位置 */

int n = 0; /* 环形缓冲区中的元素总数量 */

double buffer[NMAX];

/* 环形缓冲区的地址编号计算函数,如果到达唤醒缓冲区的尾部,将绕回到头部。

环形缓冲区的有效地址编号为:0到(NMAX-1)

*/

int addring (int i)

{

        return (i+1) == NMAX ? 0 : i+1;

}

/* 从环形缓冲区中取一个元素 */

double get(void)

{

int pos;

if (n>0){

                      Pos = iget;

                      iget = addring(iget);

                      n--;

                      return buffer[pos];

}

else {

printf(“Buffer is empty\n”);

return 0.0;

}

 

/* 向环形缓冲区中放入一个元素*/

void put(double z)

{

if (n<nmax){< span="" style="word-wrap: break-word;">

                      buffer[iput]=z;

                      iput = addring(iput);

                      n++;

}

else

printf(“Buffer is full\n”);

}

 

int main{void)

{

chat opera[5];

double z;

do {

printf(“Please input p|g|e?”);

scanf(“%s”, &opera);

               switch(tolower(opera[0])){

               case ‘p’: /* put */

                  printf(“Please input a float number?”);

                  scanf(“%lf”, &z);

                  put(z);

                  break;

case ‘g’: /* get */

                  z = get();

printf(“%8.2f from Buffer\n”, z);

break;

case ‘e’:

                  printf(“End\n”);

                  break;

default:

                  printf(“%s - Operation command error! \n”, opera);

}/* end switch */

}while(opera[0] != ’e’);

return 0;

}

 


在CAN通信卡设备驱动程序中,为了增强CAN通信卡的通信能力、提高通信效率,根据CAN的特点,使用两级缓冲区结构,即直接面向CAN通信卡的收发缓 冲区和直接面向系统调用的接收帧缓冲区。 通讯中的收发缓冲区一般采用环形队列(或称为FIFO队列),使用环形的缓冲区可以使得读写并发执行,读进程和写进程可以采用“生产者和消费者”的模型来 访问缓冲区,从而方便了缓存的使用和管理。然而,环形缓冲区的执行效率并不高,每读一个字节之前,需要判断缓冲区是否为空,并且移动尾指针时需要进行“折行处理”(即当指针指到缓冲区内存的末尾时,需要新将其定向到缓冲区的首地址);每写一个字节之前,需要判断缓区是否为,并且移动尾指针时同样需要进行“ 折行处理”。程序大部分的执行过程都是在处理个别极端的情况。只有小部分在进行实际有效的操作。这就是软件工程中所谓的“8比2”关系。结合CAN通讯实际情况,在本设计中对环形队列进行了改进,可以较大地提高数据的收发效率。 由于CAN通信卡上接收和发送缓冲器每次只接收一帧CAN数据,而且根据CAN的通讯协议,CAN控制器的发送数据由1个字节的标识符、一个字节的RTR 和DLC位及8个字节的数据区组成,共10个字节;接收缓冲器与之类似,也有10个字节的寄存器。所以CAN控制器收的数据是短小的定长帧(数据可以不满 8字节)。 于是,采用度为10字节的数据块业分配内存比较方便,即每次需要内存缓冲区时,直接分配10个字节,由于这10个字节的地址是线性的,故不需要进行“折行”处理。更重要的是,在向缓冲区中写数据时,只需要判断一次是否有空闲块并获取其块首指针就可以了,从而减少了重复性的条件判断,大大提高了程序的执行效率;同样在从缓冲队列中读取数据时,也是一次读取10字节的数据块,同样减少了重复性的条件判断。 在CAN卡驱动程序中采用如下所示的称为“Block_Ring_t”的数据结构作为收发数据的缓冲区:

 

 

typedef struct {

long signature;

unsigned char *head_p;

unsigned char *tail_p;

unsigned char *begin_p;

unsigned char *end_p;

unsigned char buffer [BLOCK_RING_BUFFER_SIZE];

int usedbytes;

}Block_Ring_t;

 

 

该数据结构在通用的环形队列上增加了一个数据成员usedbytes,它表示当前缓冲区中有多少字节的空间被占用了。使用usedbytes,可以比较方 便地进行缓冲区满或空的判断。当usedbytes=0时,缓冲区空;当usedbytes=BLOCK_RING_BUFFER_SIZE时,缓冲区 满。 本驱动程序除了收发缓冲区外,还有一个接收帧缓冲区,接收帧队列负责管理经Hilon A协议解包后得到的数据帧。由于有可能要同接收多个数据帧,而根据CAN总线遥通信协议,高优先级的报文将抢占总线,则有可能在接收一个低优先级且被分为 好几段发送的数据帧时,被一个优先级高的数据帧打断。这样会出现同时接收到多个数据帧中的数据包,因而需要有个接收队列对同时接收的数据帧进行管理。 当有新的数据包到来时,应根据addr(通讯地址),mode(通讯方式),index(数据包的序号)来判断是否是新的数据帧。如果是,则开辟新的 frame_node;否则如果已有相应的帧节点存地,则将数据附加到该帧的末尾;在插入数据的同时,应该检查接收包的序号是否正确,如不正确将丢弃这包 数据。 每次建立新的frame_node时,需要向frame_queue申请内存空间;当frame_queue已满时,释放掉队首的节点(最早接收的但未完 成的帧)并返回该节点的指针。 当系统调用读取了接收帧后,释放该节点空间,使设备驱动程序可以重新使用该节点。

 


形缓冲区:环形缓冲队列学习

来源: 发布时间:星期四, 2008年9月25日 浏览:117次 评论:0

项目中需要线程之间共享一个缓冲FIFO队列,一个线程往队列中添数据,另一个线程取数据(经典的生产者-消费者问题)。开始考虑用STL的vector 容器, 但不需要随机访问,频繁的删除最前的元素引起内存移动,降低了效率。使用LinkList做队列的话,也需要频繁分配和释放结点内存。于是自己实现一个有 限大小的FIFO队列,直接采用数组进行环形读取。

队列的读写需要在外部进程线程同步(另外写了一个RWGuard类, 见另一文)

到项目的针对性简单性,实现了一个简单的环形缓冲队列,比STL的vector简单

PS: 第一次使用模板,原来类模板的定义要放在.h 文件中, 不然会出现连接错误。

template 
class CShareQueue 
{
public:
CShareQueue();
CShareQueue(unsigned int bufsize);
virtual ~CShareQueue();

_Type pop_front();
bool push_back( _Type item);
//返回容量
unsigned int capacity() { //warning:需要外部数据一致性
return m_capacity;
}
//返回当前个数
unsigned int size() { //warning:需要外部数据一致性
return m_size;
}
//是否满//warning: 需要外部控制数据一致性
bool IsFull() {
return (m_size >= m_capacity);
}

bool IsEmpty() {
return (m_size == 0);
}


protected:
UINT m_head;
UINT m_tail;
UINT m_size;
UINT m_capacity;
_Type *pBuf;


};

template 
CShareQueue<_Type>::CShareQueue() : m_head(0), m_tail(0), m_size(0)
{
pBuf = new _Type[512];//默认512
m_capacity = 512;
}

template 
CShareQueue<_Type>::CShareQueue(unsigned int bufsize) : m_head(0), m_tail(0)
{
if( bufsize > 512 || bufsize < 1)
{
pBuf = new _Type[512];
m_capacity = 512;
}
else
{
pBuf = new _Type[bufsize];
m_capacity = bufsize;
}
}

template 
CShareQueue<_Type>::~CShareQueue()
{
delete[] pBuf;
pBuf = NULL;
m_head = m_tail = m_size = m_capacity = 0;
}

//前面弹出一个元素
template 
_Type CShareQueue<_Type>::pop_front()
{
if( IsEmpty() )
{
return NULL;
}
_Type itemtmp;
itemtmp = pBuf[m_head];
m_head = (m_head + 1) % m_capacity;
--m_size;
return itemtmp;

}

//从尾部加入队列
template 
bool CShareQueue<_Type>::push_back( _Type item)
{
if ( IsFull() )
{
return FALSE;
}
pBuf[m_tail] = item;
m_tail = (m_tail + 1) % m_capacity;
++m_size;
return TRUE;
}


#endif // !defined(_DALY_CSHAREQUEUE_H_)


这篇关于环形缓冲区的实现原理(ring buffer)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680574

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、