RingBuffer源代码分析(最详细)

2024-02-05 10:08

本文主要是介绍RingBuffer源代码分析(最详细),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://www.cnblogs.com/prayer521/p/5868283.html


RingBuffer源代码分析

看到一篇写的非常详细的帖子,为防止楼主删帖后找不到,果断转载过来

RingBuffer源代码分析 出处: http://bbs.ickey.cn/community/forum.php?mod=viewthread&tid=43202
(出处: ICKEY BBS)

大家都知道,环形缓冲区是比较常用的数据结构,正好机智云“微信宠物屋源代码v2.3”中也用到了。

下面给大家分析一下。

 

首先是数据结构:

“RingBuffer.h”

注意是head指向了读区域,tail指向了写区域!

注意是head指向了读区域,tail指向了写区域!

注意是head指向了读区域,tail指向了写区域!

typedef struct {size_t rb_capacity;     //缓冲区容量char  *rb_head;         //用于读出的指针char  *rb_tail;         //用于写入的指针char  rb_buff[256];     //缓冲区实体
}RingBuffer;

 

下面分析他的几个函数:

“RingBuffer.c”

 

//用来比较最小值的宏
#define min(a, b) (a)<(b)?(a)

b)//新建RingBuffer,给成员赋值
//MAX_RINGBUFFER_LEN 这个宏,被定义为"P0数据最大长度"的2倍
//head/tail  两个指针,都指向缓冲区实体(数组rb_buff)的首地址
void rb_new(RingBuffer* rb)
{rb->rb_capacity = MAX_RINGBUFFER_LEN; //capacity;rb->rb_head     = rb->rb_buff;rb->rb_tail     = rb->rb_buff;
};

 

 

获得缓冲区总容量Capacity:

 

size_t     rb_capacity(RingBuffer *rb)
{return rb->rb_capacity;
}

 

获得缓冲区可读区域,返回可读区域大小:

 

三种情况:

1、head与tail都指向同一个地方时,可读区域大小为0【这种情况只会在缓冲区还未使用时出现,

开始使用之后,不会出现head/tail重合的现象,即tail永远不会等于head,否则head指向的数据还未读走就被覆盖了!】

2、head < tail  ,说明tail没有写到缓冲区末尾,从缓冲区开头重新开始。可读的区域自然为(tail - head)

3、head > tail  ,说明tail已经从缓冲区末尾写完,并从开头处重新准备写了。

插入图片给大家看看:

rb_buff是数组名,因此可以作为缓冲实体首地址的指针。

 

size_t     rb_can_read(RingBuffer *rb)
{if (rb->rb_head == rb->rb_tail) return 0;if (rb->rb_head < rb->rb_tail) return rb->rb_tail - rb->rb_head;return rb_capacity(rb) - (rb->rb_head - rb->rb_tail);
}

 

 

获得可写区域大小,就可以用总容量 减去 可读区域大小来计算了:

 

size_t     rb_can_write(RingBuffer *rb)
{return rb_capacity(rb) - rb_can_read(rb);
}

 

 

读数据,从head指向的地址开始,读到data指向的地址处,读count个数据。返回读的个数

三种情况:

1、head < tail  ,此时要从count 和"可读区域大小"中选一个较小的值,作为读操作的次数。避免了count 大于“可读区域”的错误。

2、head > tail  且 count 的个数 小于“从head到缓冲区末尾的数据个数”图中蓝色。直接复制内存,再修改head 指针即可。

3、head > tail  且 count 的个数 大于“从head到缓冲区末尾的数据个数”。

此时,先把从head到缓冲区末尾的值蓝色复制到data处,再把剩余的绿色复制过去。注意两个值:copy_sz 和*(data + copy_sz)如图

这种情况下,问题来了,要是绿色的区域超过了tail 怎么办?:)

所以,应该加了一个判断,这个在写操作中做了,但这里没做。即要读的个数count 要小于可读区域的大小。

不然会出现head > tail 但head 指向的数据以及head 后边的数据又不是有效数据,这个问题。

代码:

 

size_t     rb_read(RingBuffer *rb, void *data, size_t count)
{if (rb->rb_head < rb->rb_tail){int copy_sz = min(count, rb_can_read(rb));memcpy(data, rb->rb_head, copy_sz);rb->rb_head += copy_sz;return copy_sz;}else{if (count < rb_capacity(rb)-(rb->rb_head - rb->rb_buff)){int copy_sz = count;memcpy(data, rb->rb_head, copy_sz);rb->rb_head += copy_sz;return copy_sz;}else{int copy_sz = rb_capacity(rb) - (rb->rb_head - rb->rb_buff);memcpy(data, rb->rb_head, copy_sz);rb->rb_head = rb->rb_buff;   copy_sz += rb_read(rb, (char*)data+copy_sz, count-copy_sz); return copy_sz;}}
}

 

 

 

写数据,把数据从data指向的地址,写到tail 指向的地址,写count个。返回写的个数。

这里进来直接判断,要写入的内容大小 要小于可写区域大小,防止造成数据覆盖。写入合法。

下面写入分了三种情况:

1、2 需要计算tail_avail_sz,这个值为tail 到缓冲区末尾的数据区域大小。

1、head < tail  ,count < tail_avail_sz  。直接复制内容。假如tail 到了缓冲区末尾,让tail 回到缓冲区首地址。

2、head < tail  ,count > tail_avail_sz  。先写入 tail_avail_sz 个数据,tail 回到缓冲区首地址,再写入剩余的部分。

3、head > tail  ,这种情况最简单,由于已经做了写入合法判断,所以直接复制内容,修改tail 即可。

代码:

 

size_t     rb_write(RingBuffer *rb, const void *data, size_t count)
{if (count >= rb_can_write(rb)) return -1;if (rb->rb_head <= rb->rb_tail)  {int tail_avail_sz = rb_capacity(rb) - (rb->rb_tail - rb->rb_buff);if (count <= tail_avail_sz){memcpy(rb->rb_tail, data, count);rb->rb_tail += count;if (rb->rb_tail == rb->rb_buff+rb_capacity(rb))rb->rb_tail = rb->rb_buff;return count;}else{memcpy(rb->rb_tail, data, tail_avail_sz);rb->rb_tail = rb->rb_buff;return tail_avail_sz + rb_write(rb, (char*)data+tail_avail_sz, count-tail_avail_sz);}}else{memcpy(rb->rb_tail, data, count);rb->rb_tail += count;return count;}
}

 

 

对于源程序中的,指针不为NULL判断,其实是必须要加上的,不知道为什么,我下载的代码,这些部分都被注释掉了。


这篇关于RingBuffer源代码分析(最详细)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680573

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

沁恒CH32在MounRiver Studio上环境配置以及使用详细教程

目录 1.  RISC-V简介 2.  CPU架构现状 3.  MounRiver Studio软件下载 4.  MounRiver Studio软件安装 5.  MounRiver Studio软件介绍 6.  创建工程 7.  编译代码 1.  RISC-V简介         RISC就是精简指令集计算机(Reduced Instruction SetCom

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

arduino ide安装详细步骤

​ 大家好,我是程序员小羊! 前言: Arduino IDE 是一个专为编程 Arduino 微控制器设计的集成开发环境,使用起来非常方便。下面将介绍如何在不同平台上安装 Arduino IDE 的详细步骤,包括 Windows、Mac 和 Linux 系统。 一、在 Windows 上安装 Arduino IDE 1. 下载 Arduino IDE 打开 Arduino 官网

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除