Python统计分析——参数估计

2024-02-05 07:20

本文主要是介绍Python统计分析——参数估计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:用python动手学统计学

       所谓参数就是总体分布的参数。

1、导入库

# 导入用于数值计算的库
import numpy as np
import pandas as pd
import scipy as sp
from scipy import stats
# 导入用于绘图的库
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()

2、导入案例材料

data=np.array([4.352982,3.735304,5.944617,3.798326,4.087688,5.265985,3.272614,3.526691,4.150083,3.736104])
data

3、点估计

      直接指定总体分布的参数为某一值的估计方法叫作点估计。

      我们使用样本均值作为总体均值的点估计量,所以只需要计算出样本的均值就可以完成估计。 这看起来很简单,但要注意,正因为样本均值具有无偏性和一致性,它才可以作为总体均值的估计值。

      同理,我们使用样本的无偏方差作为总体方差的估计值。

python实现步骤如下;

mu=np.mean(data)
sigma_2=np.var(data,ddof=1)
print('总体均值的估计值为:',mu)
print('总体方差的估计值为:',sigma_2)

结果如下:

4、区间估计

      估计值具有一定范围的估计方法叫作区间估计。我们使用概率的方法计算这个范围。因为估计值是一个范围,所以可以引入估计误差。估计误差越小,区间估计的范围越小;样本容量越大,区间的范围越小。

      置信水平,是表示区间估计的区间可信度的概率。例如95%、99%都是常用的置信水平。二满足某个置信水平的区间叫作置信区间。对于同一组数据,置信水平越大,置信区间就越大。

       置信区间的计算如下:

\bar{x}-t_{1-\alpha/2}\times \sigma/\sqrt{n}<\mu<\bar{x}-t_{\alpha/2}\times \sigma/\sqrt{n}

python实现步骤如下:

# 自由度
df=len(data)-1
sigma=np.std(data,ddof=1)
se=sigma/np.sqrt(len(data))
interval=stats.t.interval(confidence=0.95,df=df,loc=mu,scale=se)
interval

结果如下:

与公式计算结果一致,如下图:

5、python函数参数介绍:

5.1 scipy.stats.t.interval()用于获取t分布的置信区间,参数介绍如下:

(1)confidence,用于设置置信水平。可以用列表的形式设置多个置信水平。如下:

(2)df为自由度,loc为样本均值,scale为样本均值的标准误。

5.2 scipy.stats.t.ppf()用于获取t分布的百分位数。

(1)q,小数形式,设置需要获取百分数对应的百分位

(2)df,设置自由度。

6、决定置信区间大小的因素

6.1 样本方差越大,置信区间越大

将样本标准差变为原来的10倍进行验证。

5.2 样本容量越大,样本均值就越可信,进而置信区间就越小

将样本容量为原来的10倍进行验证。

 5.3 置信水平越大,置信区间就会越大。

将置信水平调整为99%,进行验证。

 6、置信区间结果的解读

       如上图所示,置信水平为95%的置信区间,表示所得到的该区间包含真正的总体均值这一参数的概率为95%。

      下面用2万次的抽样结果,对置信区间的置信水平进行验证。

# 执行2万次求95%置信区间的操作
# 如果置信区间包含总体均值(本例设置为4),就为True
np.random.seed(1) # 设置随机种子,用于复现结果
# 设置数组用于存放置信区间是否包含总体均值的判断结果
be_included_array=np.zeros(20000,dtype='bool')
# 设置正态总体
pop=stats.norm(loc=4,scale=0.8)
# 完成2万次的样本抽取并对置信区间是否包含总体均值进行验证
for i in range(0,20000):sample=pop.rvs(size=10)df=len(sample)-1mu=np.mean(sample)std=np.std(sample,ddof=1)se=std/np.sqrt(len(sample))interval=stats.t.interval(0.95,df=df,loc=mu,scale=se)if(interval[0]<4 and interval[1]>4):be_included_array[i]=True# 汇总True的占比
sum(be_included_array)/len(be_included_array)

由模拟结果可以看出,总体均值包含在置信区间的比例约为95%,与置信水平基本一致。

这篇关于Python统计分析——参数估计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680140

相关文章

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调