Python统计分析——参数估计

2024-02-05 07:20

本文主要是介绍Python统计分析——参数估计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:用python动手学统计学

       所谓参数就是总体分布的参数。

1、导入库

# 导入用于数值计算的库
import numpy as np
import pandas as pd
import scipy as sp
from scipy import stats
# 导入用于绘图的库
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()

2、导入案例材料

data=np.array([4.352982,3.735304,5.944617,3.798326,4.087688,5.265985,3.272614,3.526691,4.150083,3.736104])
data

3、点估计

      直接指定总体分布的参数为某一值的估计方法叫作点估计。

      我们使用样本均值作为总体均值的点估计量,所以只需要计算出样本的均值就可以完成估计。 这看起来很简单,但要注意,正因为样本均值具有无偏性和一致性,它才可以作为总体均值的估计值。

      同理,我们使用样本的无偏方差作为总体方差的估计值。

python实现步骤如下;

mu=np.mean(data)
sigma_2=np.var(data,ddof=1)
print('总体均值的估计值为:',mu)
print('总体方差的估计值为:',sigma_2)

结果如下:

4、区间估计

      估计值具有一定范围的估计方法叫作区间估计。我们使用概率的方法计算这个范围。因为估计值是一个范围,所以可以引入估计误差。估计误差越小,区间估计的范围越小;样本容量越大,区间的范围越小。

      置信水平,是表示区间估计的区间可信度的概率。例如95%、99%都是常用的置信水平。二满足某个置信水平的区间叫作置信区间。对于同一组数据,置信水平越大,置信区间就越大。

       置信区间的计算如下:

\bar{x}-t_{1-\alpha/2}\times \sigma/\sqrt{n}<\mu<\bar{x}-t_{\alpha/2}\times \sigma/\sqrt{n}

python实现步骤如下:

# 自由度
df=len(data)-1
sigma=np.std(data,ddof=1)
se=sigma/np.sqrt(len(data))
interval=stats.t.interval(confidence=0.95,df=df,loc=mu,scale=se)
interval

结果如下:

与公式计算结果一致,如下图:

5、python函数参数介绍:

5.1 scipy.stats.t.interval()用于获取t分布的置信区间,参数介绍如下:

(1)confidence,用于设置置信水平。可以用列表的形式设置多个置信水平。如下:

(2)df为自由度,loc为样本均值,scale为样本均值的标准误。

5.2 scipy.stats.t.ppf()用于获取t分布的百分位数。

(1)q,小数形式,设置需要获取百分数对应的百分位

(2)df,设置自由度。

6、决定置信区间大小的因素

6.1 样本方差越大,置信区间越大

将样本标准差变为原来的10倍进行验证。

5.2 样本容量越大,样本均值就越可信,进而置信区间就越小

将样本容量为原来的10倍进行验证。

 5.3 置信水平越大,置信区间就会越大。

将置信水平调整为99%,进行验证。

 6、置信区间结果的解读

       如上图所示,置信水平为95%的置信区间,表示所得到的该区间包含真正的总体均值这一参数的概率为95%。

      下面用2万次的抽样结果,对置信区间的置信水平进行验证。

# 执行2万次求95%置信区间的操作
# 如果置信区间包含总体均值(本例设置为4),就为True
np.random.seed(1) # 设置随机种子,用于复现结果
# 设置数组用于存放置信区间是否包含总体均值的判断结果
be_included_array=np.zeros(20000,dtype='bool')
# 设置正态总体
pop=stats.norm(loc=4,scale=0.8)
# 完成2万次的样本抽取并对置信区间是否包含总体均值进行验证
for i in range(0,20000):sample=pop.rvs(size=10)df=len(sample)-1mu=np.mean(sample)std=np.std(sample,ddof=1)se=std/np.sqrt(len(sample))interval=stats.t.interval(0.95,df=df,loc=mu,scale=se)if(interval[0]<4 and interval[1]>4):be_included_array[i]=True# 汇总True的占比
sum(be_included_array)/len(be_included_array)

由模拟结果可以看出,总体均值包含在置信区间的比例约为95%,与置信水平基本一致。

这篇关于Python统计分析——参数估计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680140

相关文章

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一