基于深度学习的SSVEP分类算法简介

2024-02-05 06:28

本文主要是介绍基于深度学习的SSVEP分类算法简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于深度学习的SSVEP分类算法简介

  • 1、目标与范畴
  • 2、深度学习的算法介绍
  • 3、参考文献

1、目标与范畴

稳态视觉诱发电位(SSVEP)是指当受试者持续注视固定频率的闪光或翻转刺激时,在大脑枕-额叶区域诱发的与刺激频率相关的电生理信号。与P300、运动想像(MI)和其他脑电图信号相比,SSVEP具有更高的信噪比,可以产生更高的ITR,使其成为长期以来最有前途的脑电图范式之一。然而,传统的信号处理算法在解码SSVEP信号时依赖于手动特征提取,在各种极端情况下(数据长度短、刺激数目多、校准数据量小)性能较差,无法满足行业的实际需求。深度学习技术作为人工智能的主要研究分支之一,已被应用于计算机视觉、自然语言处理、推荐系统等各个领域的研究。由于其强大的特征表达能力和极高的灵活性,它颠覆了这些领域的算法设计思想,并取得了显著的成果。

近年来,随着深度学习技术在脑机接口领域的各个方面都具有不错的应用前景,并取得了十分可观的实验效果,从而逐渐受到脑机接口领域研究人员的青睐。SSVEP-BCI系统的研究者们也把握了这个时代机遇,开始尝试探索使用深度学习技术研发SSVEP频率识别算法。因此,本文致力于追踪与介绍前沿研究者们提出的基于深度学习的SSVEP信号识别方法,并提供复现他们模型的Python实现代码。复现的方法包括EEGNet1-2、C-CNN3、FBtCNN4、ConvCA5、SSVEPNet6和SSVEPformer7。代码里使用了Nankanish Masaki在Github上提供的12分类公共数据集8评估模型性能。

2、深度学习的算法介绍

  • EEGNet: EEGNet是一种专门为处理脑电信号数据而设计的卷积神经网络模型,它接收时域脑电数据作为网络输入。EEGNet由4层组成。第一层是卷积层,用于模拟对每个通道数据进行的带通滤波操作。第二层是空间滤波层,通过深度卷积对每个通道的数据进行加权。第三层是用于提取类别信息的独立卷积层。第四层是用于分类的完全连接层。自提出以来,EEGNet已被用于各种脑电任务,如运动图像、P300、SSVEP等 1-2
    在这里插入图片描述

  • CCNN: CCNN也是一个卷积神经网络模型。不同的是,C-CNN使用富含振幅和相位信息的频域数据作为网络输入。值得注意的是,为了获得网络的输入,CCNN使用了基于填充的FFT算法,该算法可以获得任何数据长度的220个数据点,包括110个实部数据和110个虚部数据。CCNN网络结构由两个卷积层和一个完全连接层组成。第一卷积层是空间滤波层,第二卷积层是时间滤波层,全连接层用于分类。CCNN的出现表明光谱数据有利于SSVEP的分类3
    在这里插入图片描述

  • FBtCNN: 对于SSVEP频率识别过程中,在频域输入的范式下,短期窗口下的特征可能不明显,每个通道的时间差异可能被忽略。考虑到谐波信息中嵌入了大量关于频率识别的有效信息,研究人员提出了一种基于滤波器组技术的CNN架构,称为FBtCNN。FBtCNN使用时域信号作为网络输入,并使用滤波器组融合来自不同频带的特征信息,以提高网络的分类性能4
    在这里插入图片描述

  • ConvCA: 从不同电极通道收集的SSVEP信号彼此具有非线性关系,因此来自多个通道的EEG信号的线性组合可能不是对SSVEP进行分类的最准确的解决方案。为了进一步提高SSVEP-BCI的性能,研究人员提出了一种基于CNN的非线性相关分析网络,称为ConvCA。ConvCA有两个分支,一个是将多通道脑电图信号降级为单通道脑电图信号的信号网络,另一个是把多通道参考信号解释为单通道参考信号的参考网络。ConvCA通过分析信号网络输出和参考网络输出之间的相关性来完成SSVEP的分类过程5
    在这里插入图片描述

  • SSVEPNet: SSVEPNet是卷积神经网络和长短期记忆网络的混合网络模型,接受时域数据作为网络输入。SSVEPNet由三部分组成:卷积神经网络、长短期记忆网络和全连接网络。其中,CNN用于提取脑电的时空特征,双向LSTM用于基于时空特征之间的依赖性进行编码,由三个全连接层组成的全连接网络用于最终分类。此外,为了抑制网络训练过程中可能出现的过拟合,在网络实现过程中结合了频谱归一化标签平滑技术,进一步提高了模型的泛化能力。即使只有少量的校准数据,SSVEPNet仍然可以实现非常好的分类性能,并且这一特性已经在4类、12类和40类数据集上得到了验证6
    在这里插入图片描述

  • SSVEPformer: 基于注意力机制的Transformer已被应用至计算机视觉、自然语言处理等多个领域,并取得了举世瞩目的成果。近年来,Transformer也逐渐被引入至脑电信号的解码分析中来,揭示了Transformer应用至SSVEP-BCI系统的潜在可能性。正愁于当前SSVEP解码算法依赖于大量的被试校准数据,研究者们提出了基于Transformer的SSVEP分类网络SSVEPformer以实现零校准高性能网络。SSVEPformer与C-CNN的网络输入一致,使用频域信号作为输入,并结合CNN与MLP网络完成Transformer的特征编码与注意力学习过程。SSVEPformer可以在跨被试实验中取得十分可观的分类性能,显著优于其它分类网络。此外,结合滤波器组技术,研究者们提出了改进版网络FB-SSVEPformer,以进一步地提升网络性能。

在这里插入图片描述
所有深度学习模型的实现代码: https://github.com/YuDongPan/DL_Classifier

3、参考文献


  1. Lawhern V J, Solon A J, Waytowich N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces[J]. Journal of neural engineering, 2018, 15(5): 056013. https://iopscience.iop.org/article/10.1088/1741-2552/aace8c/meta ↩︎ ↩︎

  2. Waytowich N, Lawhern V J, Garcia J O, et al. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials[J]. Journal of neural engineering, 2018, 15(6): 066031. https://iopscience.iop.org/article/10.1088/1741-2552/aae5d8/meta ↩︎ ↩︎

  3. Ravi A, Beni N H, Manuel J, et al. Comparing user-dependent and user-independent training of CNN for SSVEP BCI[J]. Journal of neural engineering, 2020, 17(2): 026028. https://iopscience.iop.org/article/10.1088/1741-2552/ab6a67/meta ↩︎ ↩︎

  4. Ding W, Shan J, Fang B, et al. Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 2615-2624. https://ieeexplore.ieee.org/abstract/document/9632600/ ↩︎ ↩︎

  5. Li Y, Xiang J, Kesavadas T. Convolutional correlation analysis for enhancing the performance of SSVEP-based brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12): 2681-2690. https://ieeexplore.ieee.org/abstract/document/9261605/ ↩︎ ↩︎

  6. Pan Y, Chen J, Zhang Y, et al. An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition[J]. Journal of Neural Engineering, 2022, 19(5): 056014. https://iopscience.iop.org/article/10.1088/1741-2552/ac8dc5/meta ↩︎ ↩︎

  7. Chen J, Zhang Y, Pan Y, et al. A Transformer-based deep neural network model for SSVEP classification[J]. Neural Networks, 2023, 164: 521-534. https://www.sciencedirect.com/science/article/abs/pii/S0893608023002319 ↩︎

  8. Nakanishi M, Wang Y, Wang Y T, et al. A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials[J]. PloS one, 2015, 10(10): e0140703. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140703 ↩︎

这篇关于基于深度学习的SSVEP分类算法简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/679991

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06