力扣 第 123 场双周赛 解题报告 | 珂学家 | 二维偏序+单调队列优化

2024-02-04 12:20

本文主要是介绍力扣 第 123 场双周赛 解题报告 | 珂学家 | 二维偏序+单调队列优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

image.png

执手看歌敲金钗,笑语落珠明眸睐。
忽然蝴蝶春风满,焉教冷镜瘦朱颜。


整体评价

T3是基于map的前缀和的变形题,T4是二维偏序的一道应用题。

题外话,力扣还是实现N久之前的承诺了,命名权奖励,赞一个。


T1. 三角形类型 II

思路: 模拟

class Solution {public String triangleType(int[] nums) {// 先判合法性Arrays.sort(nums);if (nums[0] + nums[1] <= nums[2]) return "none";if (nums[0] == nums[1] && nums[1] == nums[2]) {return "equilateral";} else if (nums[0] == nums[1] || nums[1] == nums[2]) {return "isosceles";} else {return "scalene";}}
}

T2. 人员站位的方案数 I

和T4一起讲


T3. 最大好子数组和

思路: 基于map的前缀和应用

这边需要以值作为key, value为最小的前缀和(需向前偏移一位)

更新的时候,需要分类讨论,v为当前值

  • v − k v - k vk
  • v + k v + k v+k
class Solution {public long maximumSubarraySum(int[] nums, int k) {long inf = Long.MIN_VALUE / 10;long res = inf;// 维护最小的前缀和Map<Long, Long> minMap = new HashMap<>();long acc = 0;for (int i = 0; i < nums.length; i++) {long v = nums[i];acc += v;if (minMap.containsKey(v - k)) {res = Math.max(acc - minMap.get(v - k), res);}if (minMap.containsKey(v + k)) {res = Math.max(acc - minMap.get(v + k), res);}// 更新if (!minMap.containsKey(v) || acc - v < minMap.get(v)) {minMap.put(v, acc - v);}}return res == inf ? 0 : res;}}

T4. 人员站位的方案数 II

思路: 二维偏序 + 枚举

对于偏序题,一般先固定一个维度

  1. 先按x坐标从小到大排序,
  2. 再按照y坐标从大到小排序

因为题目指定左上角,右下角

然后枚举左右端点,check是否满足需求即可。

在枚举的过程中,可以引入

单调队列优化 单调队列优化 单调队列优化

实际上只要维护最接近左端点y坐标(严格小于等于)的单变量即可, 递增状态

这样整个时间复杂度可以降为

  • 排序 O ( n l o g n ) O(nlogn) O(nlogn)
  • 枚举左右端点 O ( n 2 ) O(n^2) O(n2)

最终为 O ( n 2 ) O(n^2) O(n2)

class Solution {public int numberOfPairs(int[][] points) {// 按x从小到大,按y从大到小Arrays.sort(points, Comparator.comparingInt((int[] p) -> p[0]).thenComparingInt(p -> -p[1]));int res = 0;int n = points.length;for (int i = 0; i < n; i++) {// 维护最接近左端点y值的值(严格小于等于)int nearest = Integer.MIN_VALUE;for (int j = i + 1; j < n; j++) {if (points[j][1] <= points[i][1]) {if (points[j][1] > nearest) {res++;nearest = points[j][1];}}}}return res;}
}

  • 离散化+二维前缀和 (补充)

这个解法应该更加的直观

class Solution {// 离散化Map<Integer, Integer> discrete(List<Integer> ps) {TreeSet<Integer> range = new TreeSet<>(ps);Map<Integer, Integer> ids = new HashMap<>();int ptr = 0;for (var k: range) {ids.put(k, ptr++);}return ids;}public int numberOfPairs(int[][] points) {int n = points.length;int res = 0;Map<Integer, Integer> xs = discrete(Arrays.stream(points).map(p -> p[0]).collect(Collectors.toList()));Map<Integer, Integer> ys = discrete(Arrays.stream(points).map(p -> p[1]).collect(Collectors.toList()));int h = ys.size(), w = xs.size();int[][] area = new int[h][w];for (int[] p: points) {area[ys.get(p[1])][xs.get(p[0])] = 1;}int[][] pre = new int[h + 1][w + 1];for (int i = 0; i < h; i++) {for (int j = 0; j < w; j++) {pre[i + 1][j + 1] = pre[i + 1][j] + pre[i][j + 1] - pre[i][j] + area[i][j];}}for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {if (i == j) continue;if (points[i][0] <= points[j][0] && points[i][1] >= points[j][1]) {int ty = ys.get(points[i][1]), by = ys.get(points[j][1]);int tx = xs.get(points[j][0]), bx = xs.get(points[i][0]);int s = pre[ty + 1][tx + 1] - pre[ty + 1][bx] - pre[by][tx + 1] + pre[by][bx];if (s == 2) {res ++;}}}}return res;}
}

写在最后

image.png

这篇关于力扣 第 123 场双周赛 解题报告 | 珂学家 | 二维偏序+单调队列优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/677489

相关文章

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX