ChatGPT高效提问—基础知识(LM、PLM以及LLM)

2024-02-04 09:52

本文主要是介绍ChatGPT高效提问—基础知识(LM、PLM以及LLM),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ChatGPT高效提问—基础知识(LM、PLM以及LLM)

​ 了解语言模型(language model, LM)、预训练语言模型(pre-trained language model, PLM)和大型语言模型(large language model, LLM)对于优化prompt非常重要。这些模型属于自然语言处理领域中最强大、最先进的技术之列,并广泛用于各种NLP任务,例如文本生成、文本分类、情感分析和机器翻译等。

​ 在选择模型时,需要考虑数据量、任务类型和准确率等多个方面。了解不同模型的特点和适用范围以及工作原理,可以帮助我们更好地进行选择和优化。例如,ChatGPT是一种预训练语言模型,它使用Transformer架构来学习自然语言的规律和特征。如果我们需要执行文本生成任务,ChatGPT可能是一个很好的选择,因为它能够生产高质量且流畅的文本。而对于文本分类任务,一个经过优化的大型语言模型可能更适合,因为它具有更高的准确率和较好的泛化能力。

1.2.1 语言模型

​ 语言模型是一种用于自然语言处理的统计模型,它能够对语言序列进行建模和预测。在自然语言处理领域,它通常用于判断一个句子是否合理,并为执行其他任务提供基础。

​ 语言模型通过学习文本数据中词语或自发的统计规律,来预测下一个词语或字符的出现概率。这种能力使得语言模型能够执行生成新文本、评估句子流畅度、文本纠错、机器翻译等任务。

​ 常见的语言模型包括基于n-gram的统计模型和基于神经网络的模型,如循环神经网络(RNN)、长短时记忆网络(LSTM)和近来的Transformer模型。

​ 语言模型的训练过程通常涉及使用大规模的文本语料库来学习词语之间的关联关系。模型根据上下文信息预测下一个词语的出现概率,这可以通过最大似然估计等方法进行优化。

​ 语言模型在许多自然语言处理任务中发挥着重要作用,例如自然语音识别、机器翻译、语音生成、语音合成等。它们为计算机理解和生成自然语言提供了基础,并在文本生成、对话系统和智能助手等领域有广泛应用。

1.2. 2 预训练语言模型

​ 预训练语言模型是通过无监督学习在大规模语料库上进行预先训练得到模型。PLM可以学习自然语言中的基本特征和规律,从而应用于下游的多种自然语言处理任务,并且可以通过微调来适应特定的任务。

​ 例如,BERT(Bidirectional Encoder Representations from Transformers)是一种典型的预训练语言模型。在预训练阶段,BERT使用大规模无标注语料库来训练模型,学习自然语言的基本特征和规律。在下游任务(如问答系统、文本分类等)中,BERT可以通过微调来适应特定的任务,从而获得优秀的性能。

1.2.3 大型语言模型

​ 大型语言模型是指参数数量巨大的语言模型,通常需要海量数据和计算资源进行训练。LLM可以通过预训练来学习自然语言特征,并在不同的下游任务中进行微调,从而在自然语言处理中获得不错的效果。

​ 例如,OpenAI的GPT-3是一个具有数千亿参数的大学语言模型,它的预训练过程使用了大量互联网语料库,并且在许多下游任务(如文本分类、生成和问答等)上表现出色。

这篇关于ChatGPT高效提问—基础知识(LM、PLM以及LLM)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/677088

相关文章

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo