Python 优先队列:heapq库的使用

2024-02-04 09:50

本文主要是介绍Python 优先队列:heapq库的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页:小嗷犬的个人主页
🍊个人网站:小嗷犬的技术小站
🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


本文目录

    • 简介
    • heapq 库的使用
      • heapify
      • heappush
      • heappop
      • heapreplace
      • heappushpop
      • merge
      • nlargest
      • nsmallest
    • 例题
      • Title
        • Time Limit
        • Memory Limit
        • Problem Description
        • Input
        • Output
        • Sample Input
        • Sample Onput
        • Note
        • Source
        • Solution


简介

heapq 库是 Python 标准库中的一部分,它提供了一些堆操作的函数,可以用来实现优先队列。

优先队列是一种特殊的队列,它的每个元素都有一个优先级,元素的出队顺序是按照优先级从高到低的顺序进行的。优先队列的实现有多种方式,其中最常用的是堆。

堆是一种特殊的树,有两种类型,分别是最大堆和最小堆。最大堆的每个节点的值都大于或等于其子节点的值,最小堆的每个节点的值都小于或等于其子节点的值。堆的根节点是堆中的最大值(最小堆的根节点是最小值)。

heapq 的大部分操作都是基于最小堆实现的,通过将元素取相反数,可以实现最大堆。


heapq 库的使用

heapq 库提供了 heapifyheappushheappopheapreplaceheappushpopmergenlargestnsmallest 等函数,用于堆的操作。

heapify

heapify 函数用于原地将列表转换为最小堆,时间复杂度为 O ( n ) O(n) O(n)

函数原型如下:

heapq.heapify(x)

其中,x 是一个列表。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
print(x)
# [0, 1, 2, 6, 3, 5, 4, 7, 8, 9]

heappush

heappush 函数用于将元素插入到最小堆中,并保持堆的不变性,时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn)

函数原型如下:

heapq.heappush(heap, item)

其中,heap 是一个最小堆,item 是要插入的元素。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
heapq.heappush(x, 2.5)
print(x)
# [0, 1, 2, 6, 2.5, 5, 4, 7, 8, 9, 3]

heappop

heappop 函数用于弹出最小堆的根节点,并保持堆的不变性,时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn)。如果堆为空,则抛出 IndexError 异常。

函数原型如下:

heapq.heappop(heap)

其中,heap 是一个最小堆。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
print(heapq.heappop(x))
# 0
print(x)
# [1, 3, 2, 6, 9, 5, 4, 7, 8]

使用 heap[0] 可以访问最小堆的根节点,但是不会弹出它。

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
print(x[0])
# 0
print(x)
# [0, 1, 2, 6, 3, 5, 4, 7, 8, 9]

heapreplace

heapreplace 函数用于弹出最小堆的根节点,并将新元素插入到堆中,保持堆的大小和不变性,时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn)。如果堆为空,则抛出 IndexError 异常。它比先调用 heappop 再调用 heappush 效率更高。

函数原型如下:

heapq.heapreplace(heap, item)

其中,heap 是一个最小堆,item 是要插入的元素。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
heapq.heapreplace(x, -1)
print(x)
# [-1, 1, 2, 6, 3, 5, 4, 7, 8, 9]

heappushpop

heappushpop 函数用于将元素插入到最小堆中,并弹出最小堆的根节点,保持堆的大小和不变性,时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn)。如果堆为空,则抛出 IndexError 异常。它比先调用 heappush 再调用 heappop 效率更高。

函数原型如下:

heapq.heappushpop(heap, item)

其中,heap 是一个最小堆,item 是要插入的元素。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
heapq.heappushpop(x, -1)
print(x)
# [0, 1, 2, 6, 3, 5, 4, 7, 8, 9]

merge

merge 函数是一个基于堆的通用功能函数,用于合并多个有序的序列,返回一个新的有序的序列,时间复杂度为 O ( n log ⁡ k ) O(n \log k) O(nlogk),其中 n n n 是所有序列的元素个数, k k k 是序列的个数。函数返回一个已排序值的迭代器,可以使用 list 函数将其转换为列表。

函数原型如下:

heapq.merge(*iterables, key=None, reverse=False)

其中,iterables 是多个有序的序列,key 是一个函数,用于从序列中提取比较的键,reverse 是一个布尔值,表示是否反转序列。

示例:

import heapq
x = [1, 3, 5, 7, 9]
y = [2, 4, 6, 8, 10]
z = heapq.merge(x, y)
print(list(z))
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

nlargest

nlargest 函数是一个基于堆的通用功能函数,用于返回最大的 n n n 个元素,时间复杂度为 O ( n log ⁡ k ) O(n \log k) O(nlogk),其中 n n n 是序列的长度, k k k 是要返回的元素个数。如果 n n n 小于 k k k,则返回整个序列。

函数原型如下:

heapq.nlargest(n, iterable, key=None)

其中,n 是要返回的元素个数,iterable 是一个序列,key 是一个函数,用于从序列中提取比较的键。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
print(heapq.nlargest(3, x))
# [9, 8, 7]

nlargest 函数在 n n n 值较小时性能较好。对于较大的 n n n,使用 sorted(iterable, reverse=True)[:n] 性能更好。当 n = 1 n=1 n=1 时,使用 max(iterable) 函数性能更好。

nsmallest

nsmallest 函数是一个基于堆的通用功能函数,用于返回最小的 n n n 个元素,时间复杂度为 O ( n log ⁡ k ) O(n \log k) O(nlogk),其中 n n n 是序列的长度, k k k 是要返回的元素个数。如果 n n n 小于 k k k,则返回整个序列。

函数原型如下:

heapq.nsmallest(n, iterable, key=None)

其中,n 是要返回的元素个数,iterable 是一个序列,key 是一个函数,用于从序列中提取比较的键。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
print(heapq.nsmallest(3, x))
# [0, 1, 2]

nsmallest 函数在 n n n 值较小时性能较好。对于较大的 n n n,使用 sorted(iterable)[:n] 性能更好。当 n = 1 n=1 n=1 时,使用 min(iterable) 函数性能更好。


例题

Title

CodeForces 1800 C2. Powering the Hero (hard version)

Time Limit

2 seconds

Memory Limit

256 megabytes

Problem Description

This is a hard version of the problem. It differs from the easy one only by constraints on n n n and t t t.

There is a deck of n n n cards, each of which is characterized by its power. There are two types of cards:

You can do the following with the deck:

Your task is to use such actions to gather an army with the maximum possible total power.

Input

The first line of input data contains single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases in the test.

The first line of each test case contains one integer n n n ( 1 ≤ n ≤ 2 ⋅ 1 0 5 1 \le n \le 2 \cdot 10^5 1n2105) — the number of cards in the deck.

The second line of each test case contains n n n integers s 1 , s 2 , … , s n s_1, s_2, \dots, s_n s1,s2,,sn ( 0 ≤ s i ≤ 1 0 9 0 \le s_i \le 10^9 0si109) — card powers in top-down order.

It is guaranteed that the sum of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

Output t t t numbers, each of which is the answer to the corresponding test case — the maximum possible total power of the army that can be achieved.

Sample Input
5
5
3 3 3 0 0
6
0 3 3 0 0 3
7
1 2 3 0 4 5 0
7
1 2 5 0 4 3 0
5
3 1 0 0 4
Sample Onput
6
6
8
9
4
Note

In the first sample, you can take bonuses 1 1 1 and 2 2 2. Both hero cards will receive 3 3 3 power. If you take all the bonuses, one of them will remain unused.

In the second sample, the hero’s card on top of the deck cannot be powered up, and the rest can be powered up with 2 2 2 and 3 3 3 bonuses and get 6 6 6 total power.

In the fourth sample, you can take bonuses 1 1 1, 2 2 2, 3 3 3, 5 5 5 and skip the bonus 6 6 6, then the hero 4 4 4 will be enhanced with a bonus 3 3 3 by 5 5 5, and the hero 7 7 7 with a bonus 5 5 5 by 4 4 4. 4 + 5 = 9 4+5=9 4+5=9.

Source

CodeForces 1800 C2. Powering the Hero (hard version)

Solution

每张英雄牌的最大力量为该英雄牌之前出现的未被使用最大奖励牌的力量。对于具体是哪张英雄牌使用了哪张奖励牌,我们是不关心的,只需要统计他们最大力量即可。

import heapqfor _ in range(int(input())):n = int(input())s = map(int, input().split())h = []ans = 0for i in s:if i == 0 and h:ans -= heapq.heappop(h)else:heapq.heappush(h, -i)print(ans)

这篇关于Python 优先队列:heapq库的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/677084

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相