JVM系列——垃圾收集器Parrlel Scavenge、CMS、G1常用参数和使用场景

本文主要是介绍JVM系列——垃圾收集器Parrlel Scavenge、CMS、G1常用参数和使用场景,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

当前在Java领域,JDK 8版本仍然享有广泛的使用,它支持了Parallel Scavenge、CMS和G1这几种垃圾收集器。因此,为了在业务应用中更加高效地进行开发和性能调优,我们需要对这些垃圾收集器的工作原理和特性有一个全面的理解和认识。

在这里插入图片描述

本文主要梳理了上述三种垃圾收集器(Parallel Scavenge、CMS和G1)的常用配置参数和使用场景,以便在实际应用中能够更加精准地调优和应对不同的性能需求。

简介

Parallel Scavenge是JDK8默认的垃圾收集器,其年轻代使用Parallel并行收集器进行垃圾回收;老年代使用Parallel Old并行收集器进行垃圾回收。

CMS在JDK1.5版本引入,JDK8中年轻代使用ParNew 收集器进行垃圾回购;老年代使用CMS收集器进行垃圾回收;极端情况下时会使用Serial收集器进行兜底Full GC。

G1一款在server端运行的垃圾收集器,专门针对于拥有多核处理器和大内存的机器,在JDK 7u4版本发行时被正式推出,在JDK9中更被指定为官方GC收集器。基于分区算法实现垃圾回收。

常用参数

Parrllel Scavenge回收器

-XX: +UseParallelGC
手动指定年轻代使用Parallel并行收集器执行内存回收任务。

-XX: +UseParallelOldGC
手动指定 老年代都是使用并行回收收集器

-XX:ParallelGCThreads
设置年轻代并行收集器的线程数。

-XX:MaxGCPauseMillis
设置垃圾收集器最大停顿时间(,(即STW的时间)。单位是亳秒

-XX : GCTimeRatio
垃圾收集时间占总时间的比例,用于衡量吞吐量的大小。默认值99

-XX: +UseAdaptiveSizePolicy
设置Parallel Scavenge收集器具有自适应调节策略

CMS回收器

-XX: +UseConcMarkSweepGC
手动指定使用CMS收集器执行内存回收任务。

-XX: CMSlnitiatingOccupanyFraction
设置堆内存使用率的阈值,一旦达到该阅值,便开始进行回收。

-XX: +UseCMSCompactAtFullCollection
用于指定在执行完Full GC后对内存空间进行压缩整理,以此避免内存碎片的产生。不过由于内存压缩整理过程无法并发执行,所带来的问题就是停顿时间变得更长了。

-XX: CMSFullGCsBeforeCompaction
设置在执行多少次Full GC后对内存空间进行压缩整理。

-XX: ParallelCMSThreads
设置CMS的线程数量

G1回收器

-XX: +UseG1GC
手动指定使用G1收集器执行内存回收任务。

-XX :G1HeapRegionSize
设置每个Region的大小。值是2的幂,范围是1MB到32MB之间,目标是根据最小的Java堆大小划分出约2048个区域。默认是堆内存的1/2000。

-XX:MaxGCPauseMillis
设置期望达到的最大Gc停顿时间指标(JVM会尽力实现,但不保证达到)。默认值是200ms

-XX: ParallelGCThread
设置STS工作线程数的值。最多设置为8

-XX:ConcGCThreads
设置并发标记的线程数。将n设置为并行垃圾回收线程数(ParallelGCThreads)的1/4左右。

-XX: InitiatingHeapOccupancyPercent
设置触发并发GC周期的Java堆占用率阈值。超过此值,就触发GC。默认值是45。

使用场景

Parrllel Scavenge回收器

最大化应用程序吞吐量。该垃圾收集器会动态调整分区大小。

CMS回收器

最小化GC的中断和停顿时间。

G1回收器

面向服务端你,针对具有大内存、多处理器的机器。

最主要是低GC延迟,并具有大堆的应用程序提供解决方案。

特定情况下用来替换CMS收集器:

  • 50%的Java堆被活动数据占用
  • 对象分配率或老年代提升频率变化很大
  • GC停顿时间过长,0.5秒以上
  • G1 GC当JVM的GC现场处理速度慢时,系统会调用应用程序线程加速垃圾回收过程

总结

通过上文的分析,我们可以认识到每种垃圾收集器都有其独特的特性和适用场景,并没有绝对的优劣之分。不过,考虑到JDK版本升级的趋势,采用G1收集器对未来的版本兼容性更为有利。

在实际的生产环境中,通常无需手动调整大量参数,因为JVM能够进行自我调优以达到较好的性能状态。然而,熟悉常用的参数配置不仅有助于我们更深入地理解JVM的垃圾回收机制,还能在必要时对垃圾回收过程进行精细控制,从而优化应用的性能表现。

这篇关于JVM系列——垃圾收集器Parrlel Scavenge、CMS、G1常用参数和使用场景的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676831

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程