智能汽车竞赛摄像头处理(3)——动态阈值二值化(大津法)

本文主要是介绍智能汽车竞赛摄像头处理(3)——动态阈值二值化(大津法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

(1)在上一节中,我们学习了对图像的固定二值化处理,可以将原始图像处理成二值化的黑白图像,这里面的本质就是将原来的二维数组进行了处理,处理后的二维数组里的元素都是0和255两个值。

(2)固定阈值二值化的使用是比赛过程中,每一处地方的二值化阈值都是同一个值,而赛道的不同地方以同一个阈值二值化出来的图像可能不合适,甚至不能正常循迹。

(3)为了适应赛道上的不同环境,很多同学会采用动态二值化,即对于采集到的不同图像,通过算法计算出合适的阈值来进行二值化处理,最后的二值化效果可能会比固定阈值化好一些(因为也有不少同学在比赛中采用固定阈值二值化处理,最后拿到了国奖,所以哪个方法更好,还真不好说,主要根据实际情况看自己的作品)。

(4)毋庸置疑,大津法会增加算法处理,处理时间肯定比固定阈值二值化长。

概念

对于图像处理入门,建议大家可以去看这篇文章

详解-OTUS(大津法-最大类间方差)原理及C语言代码实现-CSDN博客

但是,你不想看也没关系,请继续看我后面的内容,你只需要理解到一个点:大津法就是一个对二维数组处理后会得到一个值的算法,而这个值就是我们二值化要的阈值。想要搞清楚大津法原理,请移步上面的文章进行学习,我这里只进行简要介绍。

大津法

        大津法阈值采用最大类间方差的原理,适合于图像灰度分布整体呈现“双峰”的情况。大津法会自动找出一个阈值,使得分割后的两部分类间方差最大。

        最大类间方差是由日本学者大津(Nobuyuki Otsu)于1979年提出,是一种确定图像二值化分割阈值的算法。算法假设图像像素能够根据全局阈值,被分成背景[background]和目标[objects]两部分。然后,计算该最佳阈值来区分这两类像素,使得两类像素区分度最大。

大津法阈值采用最大类间方差的原理,适合于图像灰度分布整体呈现“双峰”的情况。大津法会自动找出一个阈值,使得分割后的两部分类间方差最大。

特性:

  1. 大津法对噪音十分敏感,在处理之前应对图片进行去噪处理。如果图像有存在局部噪声,则会影响大津法的判断
  2. 当目标与背景的面积比例悬殊的时候,类间方差函数可能呈现双峰或者多峰,这个时候 大津法的效果不好

(1)双峰图像,目标和背景面积差距不大,可以很好的判断,如下:

(2)当图像中的目标与背景的面积相差很大时,灰度直方图没有明显的双峰,或者两个峰的大小相差很大,分割效果不佳:

代码实现

一般大津法代码如下:

(你只需要将我的代码复制粘贴到images.c文件中,把这个函数在cpu1.c中调用即可)

images.c

#include "zf_common_headfile.h"uint8  mt9v03x_image_BandW[MT9V03X_H][MT9V03X_W];/*begin  大津法比赛   begin*/
//快速大津法二值化 pixelSum = width * height/4;
//-------------------------------------------------------------------------------------------------------------------
//  @brief      快速大津
//  @return     uint8
//  @since      v1.1
//  Sample usage:   OTSU_Threshold = otsuThreshold(mt9v03x_image_dvp[0]);//大津法阈值
//-------------------------------------------------------------------------------------------------------------------
uint8 otsuThreshold_fast(uint8 *image)   //注意计算阈值的一定要是原图像
{
#define GrayScale 256int Pixel_Max=0;int Pixel_Min=255;uint16 width = MT9V03X_W;   //宽100uint16 height = MT9V03X_H;  //高80int pixelCount[GrayScale];  //各像素GrayScale的个数pixelCount 一维数组float pixelPro[GrayScale];  //各像素GrayScale所占百分比pixelPro 一维数组int i, j, pixelSum = width * height/4;  //pixelSum是获取总的图像像素个数的1/4,相应下面轮询时高和宽都是以2为单位自增uint8 threshold = 0;
//    uint8 last_threshold = 0;uint8* data = image;  //指向像素数据的指针//清零for (i = 0; i < GrayScale; i++){pixelCount[i] = 0;pixelPro[i] = 0;}uint32 gray_sum=0;  //每次执行到这会将gray_sum清零//统计灰度级中每个像素在整幅图像中的个数for (i = 0; i < height; i+=2)   //高{for (j = 0; j < width; j+=2)    //宽{pixelCount[(int)data[i * width + j]]++;  //将当前的点的像素值作为计数数组的下标gray_sum+=(int)data[i * width + j];       //灰度值总和if(data[i * width + j]>Pixel_Max)   Pixel_Max=data[i * width + j];if(data[i * width + j]<Pixel_Min)   Pixel_Min=data[i * width + j];}}//计算每个像素值的点在整幅图像中的比例for (i = Pixel_Min; i < Pixel_Max; i++){pixelPro[i] = (float)pixelCount[i] / pixelSum;}//遍历灰度级[0,255]float w0, w1, u0tmp, u1tmp, u0, u1, u, deltaTmp, deltaMax = 0;w0 = w1 = u0tmp = u1tmp = u0 = u1 = u = deltaTmp = 0;for (j = Pixel_Min; j < Pixel_Max; j++){w0 += pixelPro[j];  //背景部分每个灰度值的像素点所占比例之和   即背景部分的比例u0tmp += j * pixelPro[j];  //背景部分 每个灰度值的点的比例 *灰度值w1=1-w0;u1tmp=gray_sum/pixelSum-u0tmp;u0 = u0tmp / w0;              //背景平均灰度u1 = u1tmp / w1;              //前景平均灰度u = u0tmp + u1tmp;            //全局平均灰度deltaTmp = (float)(w0 *w1* (u0 - u1)* (u0 - u1)) ;if (deltaTmp > deltaMax){deltaMax = deltaTmp;threshold = (uint8)j;}if (deltaTmp < deltaMax){break;}}return threshold;
}
/*end  大津法比赛   end*//*begin  大津法学习   begin*/
//------------------摄像头参数--------------//
uint8 image_threshold = 46;  //图像阈值 0~255
uint8 dis_image[60][80];uint8 otsuThreshold(uint8 *image, uint16 width, uint16 height)
{#define GrayScale 256int pixelCount[GrayScale] = {0};//每个灰度值所占像素个数float pixelPro[GrayScale] = {0};//每个灰度值所占总像素比例int i,j;int Sumpix = width * height;   //总像素点uint8 threshold = 0;uint8* data = image;  //指向像素数据的指针//统计灰度级中每个像素在整幅图像中的个数for (i = 0; i < height; i++){for (j = 0; j < width; j++){pixelCount[(int)data[i * width + j]]++;  //将像素值作为计数数组的下标//   pixelCount[(int)image[i][j]]++;    若不用指针用这个}}float u = 0;for (i = 0; i < GrayScale; i++){pixelPro[i] = (float)pixelCount[i] / Sumpix;   //计算每个像素在整幅图像中的比例u += i * pixelPro[i];  //总平均灰度}float maxVariance=0.0;  //最大类间方差float w0 = 0, avgValue  = 0;  //w0 前景比例 ,avgValue 前景平均灰度for(i = 0; i < 256; i++)     //每一次循环都是一次完整类间方差计算 (两个for叠加为1个){w0 += pixelPro[i];  //假设当前灰度i为阈值, 0~i 灰度像素所占整幅图像的比例即前景比例avgValue  += i * pixelPro[i];float variance = pow((avgValue/w0 - u), 2) * w0 /(1 - w0);    //类间方差if(variance > maxVariance){maxVariance = variance;threshold = (uint8)i;}}return threshold;
}/*end  大津法学习   end*///图像二值化
//0 - 255
//黑 - 白
void Set_image_towvalues(uint8 value)
{uint8 temp_valude;//暂存灰度值for(uint8 i = 0;i < MT9V03X_H;i++)//高{for(uint8 j = 0;j < MT9V03X_W;j++)//宽{temp_valude = mt9v03x_image[i][j];if(temp_valude < value){mt9v03x_image_BandW[i][j] = 0;//黑}else{mt9v03x_image_BandW[i][j] = 255;//白}}}
}

images.h

#ifndef CODE_IMAGES_H_
#define CODE_IMAGES_H_extern uint8  mt9v03x_image_BandW[MT9V03X_H][MT9V03X_W];void Set_image_towvalues(uint8 value);
uint8 otsuThreshold(uint8 *image, uint16 width, uint16 height);
uint8 otsuThreshold_fast(uint8 *image);
#endif /* CODE_IMAGES_H_ */

但是不优化大津法的代码,图像处理时间较长,所以大家又将“大津法”优化成了“快速大津法”,代码也在上面公布了,照我如下调用即可。

cpu1.c

void core1_main(void)
{disable_Watchdog();                     // 关闭看门狗interrupt_global_enable(0);             // 打开全局中断// 此处编写用户代码 例如外设初始化代码等mt9v03x_init();//初始化摄像头// 此处编写用户代码 例如外设初始化代码等cpu_wait_event_ready();                 // 等待所有核心初始化完毕while (TRUE){// 此处编写需要循环执行的代码TFT180_SHOW();if(mt9v03x_finish_flag)     //一幅图像完全采集完毕后,再进行图像的显示判断和显示{//Set_image_towvalues(150); //固定阈值二值化BandW_threshold = otsuThreshold_fast(mt9v03x_image[0]);//大津法得到动态阈值BandW_thresholdSet_image_towvalues(BandW_threshold); //动态阈值二值化得到二维数组mt9v03x_image_BandWtft180_displayimage03x(mt9v03x_image_BandW[0],MT9V03X_W,MT9V03X_H);//显示二值化后的图像mt9v03x_finish_flag = 0;//图像显示完成后才对标志位清零}// 此处编写需要循环执行的代码}
}

通过调用大津法处理函数,将原始图像进行动态阈值二值化处理,也是会在显示屏上得到黑白图像,固定阈值二值化和动态阈值二值化处理哪个效果好,还得看实际情况。

这篇关于智能汽车竞赛摄像头处理(3)——动态阈值二值化(大津法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676714

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

MyBatis-Plus使用动态表名分表查询的实现

《MyBatis-Plus使用动态表名分表查询的实现》本文主要介绍了MyBatis-Plus使用动态表名分表查询,主要是动态修改表名的几种常见场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录1. 引入依赖2. myBATis-plus配置3. TenantContext 类:租户上下文

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

requests处理token鉴权接口和jsonpath使用方式

《requests处理token鉴权接口和jsonpath使用方式》文章介绍了如何使用requests库进行token鉴权接口的处理,包括登录提取token并保存,还详述了如何使用jsonpath表达... 目录requests处理token鉴权接口和jsonpath使用json数据提取工具总结reques

C# 空值处理运算符??、?. 及其它常用符号

《C#空值处理运算符??、?.及其它常用符号》本文主要介绍了C#空值处理运算符??、?.及其它常用符号,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、核心运算符:直接解决空值问题1.??空合并运算符2.?.空条件运算符二、辅助运算符:扩展空值处理

浅析Python中如何处理Socket超时

《浅析Python中如何处理Socket超时》在网络编程中,Socket是实现网络通信的基础,本文将深入探讨Python中如何处理Socket超时,并提供完整的代码示例和最佳实践,希望对大家有所帮助... 目录开篇引言核心要点逐一深入讲解每个要点1. 设置Socket超时2. 处理超时异常3. 使用sele

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

基于Nacos实现SpringBoot动态定时任务调度

《基于Nacos实现SpringBoot动态定时任务调度》本文主要介绍了在SpringBoot项目中使用SpringScheduling实现定时任务,并通过Nacos动态配置Cron表达式实现任务的动... 目录背景实现动态变更定时机制配置化 cron 表达式Spring schedule 调度规则追踪定时