智能汽车竞赛摄像头处理(3)——动态阈值二值化(大津法)

本文主要是介绍智能汽车竞赛摄像头处理(3)——动态阈值二值化(大津法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

(1)在上一节中,我们学习了对图像的固定二值化处理,可以将原始图像处理成二值化的黑白图像,这里面的本质就是将原来的二维数组进行了处理,处理后的二维数组里的元素都是0和255两个值。

(2)固定阈值二值化的使用是比赛过程中,每一处地方的二值化阈值都是同一个值,而赛道的不同地方以同一个阈值二值化出来的图像可能不合适,甚至不能正常循迹。

(3)为了适应赛道上的不同环境,很多同学会采用动态二值化,即对于采集到的不同图像,通过算法计算出合适的阈值来进行二值化处理,最后的二值化效果可能会比固定阈值化好一些(因为也有不少同学在比赛中采用固定阈值二值化处理,最后拿到了国奖,所以哪个方法更好,还真不好说,主要根据实际情况看自己的作品)。

(4)毋庸置疑,大津法会增加算法处理,处理时间肯定比固定阈值二值化长。

概念

对于图像处理入门,建议大家可以去看这篇文章

详解-OTUS(大津法-最大类间方差)原理及C语言代码实现-CSDN博客

但是,你不想看也没关系,请继续看我后面的内容,你只需要理解到一个点:大津法就是一个对二维数组处理后会得到一个值的算法,而这个值就是我们二值化要的阈值。想要搞清楚大津法原理,请移步上面的文章进行学习,我这里只进行简要介绍。

大津法

        大津法阈值采用最大类间方差的原理,适合于图像灰度分布整体呈现“双峰”的情况。大津法会自动找出一个阈值,使得分割后的两部分类间方差最大。

        最大类间方差是由日本学者大津(Nobuyuki Otsu)于1979年提出,是一种确定图像二值化分割阈值的算法。算法假设图像像素能够根据全局阈值,被分成背景[background]和目标[objects]两部分。然后,计算该最佳阈值来区分这两类像素,使得两类像素区分度最大。

大津法阈值采用最大类间方差的原理,适合于图像灰度分布整体呈现“双峰”的情况。大津法会自动找出一个阈值,使得分割后的两部分类间方差最大。

特性:

  1. 大津法对噪音十分敏感,在处理之前应对图片进行去噪处理。如果图像有存在局部噪声,则会影响大津法的判断
  2. 当目标与背景的面积比例悬殊的时候,类间方差函数可能呈现双峰或者多峰,这个时候 大津法的效果不好

(1)双峰图像,目标和背景面积差距不大,可以很好的判断,如下:

(2)当图像中的目标与背景的面积相差很大时,灰度直方图没有明显的双峰,或者两个峰的大小相差很大,分割效果不佳:

代码实现

一般大津法代码如下:

(你只需要将我的代码复制粘贴到images.c文件中,把这个函数在cpu1.c中调用即可)

images.c

#include "zf_common_headfile.h"uint8  mt9v03x_image_BandW[MT9V03X_H][MT9V03X_W];/*begin  大津法比赛   begin*/
//快速大津法二值化 pixelSum = width * height/4;
//-------------------------------------------------------------------------------------------------------------------
//  @brief      快速大津
//  @return     uint8
//  @since      v1.1
//  Sample usage:   OTSU_Threshold = otsuThreshold(mt9v03x_image_dvp[0]);//大津法阈值
//-------------------------------------------------------------------------------------------------------------------
uint8 otsuThreshold_fast(uint8 *image)   //注意计算阈值的一定要是原图像
{
#define GrayScale 256int Pixel_Max=0;int Pixel_Min=255;uint16 width = MT9V03X_W;   //宽100uint16 height = MT9V03X_H;  //高80int pixelCount[GrayScale];  //各像素GrayScale的个数pixelCount 一维数组float pixelPro[GrayScale];  //各像素GrayScale所占百分比pixelPro 一维数组int i, j, pixelSum = width * height/4;  //pixelSum是获取总的图像像素个数的1/4,相应下面轮询时高和宽都是以2为单位自增uint8 threshold = 0;
//    uint8 last_threshold = 0;uint8* data = image;  //指向像素数据的指针//清零for (i = 0; i < GrayScale; i++){pixelCount[i] = 0;pixelPro[i] = 0;}uint32 gray_sum=0;  //每次执行到这会将gray_sum清零//统计灰度级中每个像素在整幅图像中的个数for (i = 0; i < height; i+=2)   //高{for (j = 0; j < width; j+=2)    //宽{pixelCount[(int)data[i * width + j]]++;  //将当前的点的像素值作为计数数组的下标gray_sum+=(int)data[i * width + j];       //灰度值总和if(data[i * width + j]>Pixel_Max)   Pixel_Max=data[i * width + j];if(data[i * width + j]<Pixel_Min)   Pixel_Min=data[i * width + j];}}//计算每个像素值的点在整幅图像中的比例for (i = Pixel_Min; i < Pixel_Max; i++){pixelPro[i] = (float)pixelCount[i] / pixelSum;}//遍历灰度级[0,255]float w0, w1, u0tmp, u1tmp, u0, u1, u, deltaTmp, deltaMax = 0;w0 = w1 = u0tmp = u1tmp = u0 = u1 = u = deltaTmp = 0;for (j = Pixel_Min; j < Pixel_Max; j++){w0 += pixelPro[j];  //背景部分每个灰度值的像素点所占比例之和   即背景部分的比例u0tmp += j * pixelPro[j];  //背景部分 每个灰度值的点的比例 *灰度值w1=1-w0;u1tmp=gray_sum/pixelSum-u0tmp;u0 = u0tmp / w0;              //背景平均灰度u1 = u1tmp / w1;              //前景平均灰度u = u0tmp + u1tmp;            //全局平均灰度deltaTmp = (float)(w0 *w1* (u0 - u1)* (u0 - u1)) ;if (deltaTmp > deltaMax){deltaMax = deltaTmp;threshold = (uint8)j;}if (deltaTmp < deltaMax){break;}}return threshold;
}
/*end  大津法比赛   end*//*begin  大津法学习   begin*/
//------------------摄像头参数--------------//
uint8 image_threshold = 46;  //图像阈值 0~255
uint8 dis_image[60][80];uint8 otsuThreshold(uint8 *image, uint16 width, uint16 height)
{#define GrayScale 256int pixelCount[GrayScale] = {0};//每个灰度值所占像素个数float pixelPro[GrayScale] = {0};//每个灰度值所占总像素比例int i,j;int Sumpix = width * height;   //总像素点uint8 threshold = 0;uint8* data = image;  //指向像素数据的指针//统计灰度级中每个像素在整幅图像中的个数for (i = 0; i < height; i++){for (j = 0; j < width; j++){pixelCount[(int)data[i * width + j]]++;  //将像素值作为计数数组的下标//   pixelCount[(int)image[i][j]]++;    若不用指针用这个}}float u = 0;for (i = 0; i < GrayScale; i++){pixelPro[i] = (float)pixelCount[i] / Sumpix;   //计算每个像素在整幅图像中的比例u += i * pixelPro[i];  //总平均灰度}float maxVariance=0.0;  //最大类间方差float w0 = 0, avgValue  = 0;  //w0 前景比例 ,avgValue 前景平均灰度for(i = 0; i < 256; i++)     //每一次循环都是一次完整类间方差计算 (两个for叠加为1个){w0 += pixelPro[i];  //假设当前灰度i为阈值, 0~i 灰度像素所占整幅图像的比例即前景比例avgValue  += i * pixelPro[i];float variance = pow((avgValue/w0 - u), 2) * w0 /(1 - w0);    //类间方差if(variance > maxVariance){maxVariance = variance;threshold = (uint8)i;}}return threshold;
}/*end  大津法学习   end*///图像二值化
//0 - 255
//黑 - 白
void Set_image_towvalues(uint8 value)
{uint8 temp_valude;//暂存灰度值for(uint8 i = 0;i < MT9V03X_H;i++)//高{for(uint8 j = 0;j < MT9V03X_W;j++)//宽{temp_valude = mt9v03x_image[i][j];if(temp_valude < value){mt9v03x_image_BandW[i][j] = 0;//黑}else{mt9v03x_image_BandW[i][j] = 255;//白}}}
}

images.h

#ifndef CODE_IMAGES_H_
#define CODE_IMAGES_H_extern uint8  mt9v03x_image_BandW[MT9V03X_H][MT9V03X_W];void Set_image_towvalues(uint8 value);
uint8 otsuThreshold(uint8 *image, uint16 width, uint16 height);
uint8 otsuThreshold_fast(uint8 *image);
#endif /* CODE_IMAGES_H_ */

但是不优化大津法的代码,图像处理时间较长,所以大家又将“大津法”优化成了“快速大津法”,代码也在上面公布了,照我如下调用即可。

cpu1.c

void core1_main(void)
{disable_Watchdog();                     // 关闭看门狗interrupt_global_enable(0);             // 打开全局中断// 此处编写用户代码 例如外设初始化代码等mt9v03x_init();//初始化摄像头// 此处编写用户代码 例如外设初始化代码等cpu_wait_event_ready();                 // 等待所有核心初始化完毕while (TRUE){// 此处编写需要循环执行的代码TFT180_SHOW();if(mt9v03x_finish_flag)     //一幅图像完全采集完毕后,再进行图像的显示判断和显示{//Set_image_towvalues(150); //固定阈值二值化BandW_threshold = otsuThreshold_fast(mt9v03x_image[0]);//大津法得到动态阈值BandW_thresholdSet_image_towvalues(BandW_threshold); //动态阈值二值化得到二维数组mt9v03x_image_BandWtft180_displayimage03x(mt9v03x_image_BandW[0],MT9V03X_W,MT9V03X_H);//显示二值化后的图像mt9v03x_finish_flag = 0;//图像显示完成后才对标志位清零}// 此处编写需要循环执行的代码}
}

通过调用大津法处理函数,将原始图像进行动态阈值二值化处理,也是会在显示屏上得到黑白图像,固定阈值二值化和动态阈值二值化处理哪个效果好,还得看实际情况。

这篇关于智能汽车竞赛摄像头处理(3)——动态阈值二值化(大津法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676714

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

智能交通(二)——Spinger特刊推荐

特刊征稿 01  期刊名称: Autonomous Intelligent Systems  特刊名称: Understanding the Policy Shift  with the Digital Twins in Smart  Transportation and Mobility 截止时间: 开放提交:2024年1月20日 提交截止日

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d