Observability:使用 Elastic Stack 分析地理空间数据 (二)

2024-02-04 01:40

本文主要是介绍Observability:使用 Elastic Stack 分析地理空间数据 (二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在之前的文章 “Observability:使用 Elastic Stack 分析地理空间数据 (一)”,我详述了如何从 OpenSky Network API 接口把数据导入到 Elasticsearch,并对这些数据进行可视化分析。也许针对很对的情况这个已经很满足了,因为它确实可以帮我们从很多实时数据中提取很多有用的东西。

在今天的文章中,我们将参考之前的文章 “如何使用 Elasticsearch ingest 节点来丰富日志和指标” 。我们可以利用 Elasticsearch ingest 节点来更加丰富我们的数据,并对这些数据做更进一步的的分析。

为了达到这个目的,我们必须首先了解在之前索引中的 icao 字段。这个字段的意思是:

ICAO 机场代码或位置指示器是由四个字母组成的代码,用于指定世界各地的机场。 这些代码由国际民用航空组织定义并发布在国际民航组织7910号文件:位置指示器中,供空中交通管制和航空公司运营(例如飞行计划)使用。

我们之前的每个文档是这样的:

{"velocity" : 0.0,"icao" : "ad0851","true_track" : 264.38,"time_position" : 1591190152,"callsign" : "AAL2535","origin_country" : "United States","position_source" : "ADS-B","spi" : false,"request_time" : 1591190160,"last_contact" : 1591190152,"@timestamp" : "2020-06-03T13:16:03.723Z","on_ground" : true,"location" : "32.7334,-117.2035"
}

另外,我们可以在地址 https://opensky-network.org/datasets/metadata/ 找到一个如下文件:

在这里,我们可以找到一个叫做 aircraftDatabase.csv 的文件。它里面的内容如下:

在上面的表格中,我们发现有一个叫做 icao24 的字段。这个字段和我们之前的文档可以进行关联,从而我们可以得到更多关于某个航班的更多信息。

创建 enrich index

由于下载的文档时一个是一个 csv 的文件。我们可以使用 data visualizer 来导入。

点击上面的 Override settings 链接:

点击 Apply 按钮:

点击上面的 Import 按钮:

我们把这个索引的名字称作为 aircraft。点击 Advaned:

再次确认 mapping,如果没有问题的话,点击 Import 按钮:

由于这个文件比较大,所以需要一点时间来进行导入:

等完成后,我们可以在 Elasticsearch 中找到一个叫做 aircraft 的索引:

GET _cat/indices

上面显示有一个新的 aircraft 的索引生成了。

创建 Enrich policy

接下来,我们来创建 enrich policy。它告诉我们如何丰富数据。在 Kibana 中打入如下的命令:

PUT /_enrich/policy/flights_policy
{"match": {"enrich_fields": ["acars","adsb","built","category_description","engines","first_flight_date","icao_aircraft_type","line_number","manufacturer_icao","manufacturer_name","model","modes","notes","operator","operator_callsign","operator_iata","operator_icao","owner","reg_until","registered","registration","seat_configuration","serial_number","status","test_reg","type_code"],"indices": ["aircraft"],"match_field": "icao"}
}

我们使用 execute enrich policy API 为该策略创建enrich索引:

POST /_enrich/policy/flights_policy/_execute

接着,我们创建一个叫做 flights_aircraft_enrichment 的 pipeline:

PUT /_ingest/pipeline/flights_aircraft_enrichment
{"description": "joins incoming ADSB state info with richer aircraft metadata","processors": [{"enrich": {"field": "icao","policy_name": "flights_policy","target_field": "aircraft"}}]
}

到此为止,我们已经成功地创建了 丰富策略。接下来,我们将展示如何使用这个 pipeline 来丰富我们的数据。

 

丰富数据

为了能够使用我们上面定义好的 pipeline,我们重参考之前的文章 “Observability:使用 Elastic Stack 分析地理空间数据 (一)”里的 fligths_logstash.conf 文件,并修改如下的 output 部分:

output {stdout { codec => rubydebug}elasticsearch {manage_template => "false"index => "flights"# pipeline => "flights_aircraft_enrichment"hosts => "localhost:9200"}
}

我们把上面的这一行的注释拿掉:

# pipeline => "flights_aircraft_enrichment"

这样变成了:

output {stdout { codec => rubydebug}elasticsearch {manage_template => "false"index => "flights"pipeline => "flights_aircraft_enrichment"hosts => "localhost:9200"}
}

在启动 Logstash 之前,我们可以先删除之前的 flights 索引:

DELETE flights

再接着执行如下的命令:

PUT flights
{"mappings": {"properties": {"@timestamp": {"type": "date"},"baro_altitude": {"type": "float"},"callsign": {"type": "keyword"},"geo_altitude": {"type": "float"},"icao": {"type": "keyword"},"last_contact": {"type": "long"},"location": {"type": "geo_point"},"on_ground": {"type": "boolean"},"origin_country": {"type": "keyword"},"position_source": {"type": "keyword"},"request_time": {"type": "long"},"spi": {"type": "boolean"},"squawk": {"type": "long"},"time_position": {"type": "long"},"true_track": {"type": "float"},"velocity": {"type": "float"},"vertical_rate": {"type": "float"}}}
}

重新运行 Logstash:

​
sudo ./bin/logstash -f fligths_logstash.conf

我们在 Kibana 中检查 flights 的 mapping:

GET flights/_mapping

我们可以看到一些新增加的各个新字段:

我们可以通过 search:

        "_source" : {"aircraft" : {"owner" : "Wells Fargo Trust Co Na Trustee","reg_until" : "2021-04-30","modes" : false,"built" : "1984-01-01","acars" : false,"manufacturer_icao" : "BOEING","serial_number" : "23018","manufacturer_name" : "Boeing","icao_aircraft_type" : "L2J","operator_callsign" : "GIANT","operator_icao" : "GTI","engines" : "GE CF6-80 SERIES","icao" : "a8a763","registration" : "N657GT","model" : "767-281","type_code" : "B762","adsb" : false},"true_track" : 272.81,"velocity" : 5.14,"spi" : false,"origin_country" : "United States","@timestamp" : "2020-06-04T10:41:00.558Z","request_time" : 1591267250,"time_position" : 1591267168,"last_contact" : 1591267168,"callsign" : "GTI165","icao" : "a8a763","location" : "39.0446,-84.6505","on_ground" : true,"position_source" : "ADS-B"}}

我们可看到一个叫做 aircraft 的字段,它含有这个飞机所有被丰富的信息。

运用 Kibana 分析数据

找出前10的飞机型号

因为有新的字段进来,所以我们必须重新创建新的 inde pattern:

我们可以看到最多的是 PC-12/47E 这个机型。

 

找出飞机制造商的分布

我们看到 BOING 公司的市场份额是最大的。AIRBUS 处于第二的位置。

 

飞机机龄分布

我们可以看出来最多的飞机是2019年生产的。

 

飞机机型和飞行高度的关系

可以看出来 A320-214 飞机飞的是最高的。

Graph

运用 Graph 来找出数据直接的关系。如果你对 Graph 还不是很了解的话,请参阅我之前的教程 “Elastic Graph 介绍”。

点击 Create graph:

点击 Select a data source:

选择 flights* :

点击 Add fields:

添加 fields:

我们需要保持这个 graph。然后进行搜索:

从上面,我们可看出来 BOING 和我们想要的各个字段之间的关系。

我们从收集的数据可以有更多的其它的分析。在这里,我就不一一枚举了。你们可以做任何你想要的分析。

这篇关于Observability:使用 Elastic Stack 分析地理空间数据 (二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676034

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma