求解SDP问题—使用SeDuMi和YALMIP

2024-02-04 01:08

本文主要是介绍求解SDP问题—使用SeDuMi和YALMIP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://pinkyjie.com/2010/09/11/solve-sdp-using-sedumi-yalmip/

求解SDP问题—使用SeDuMi和YALMIP

9月 11日 2010

SDP(SemiDefinite Programing,半定规划)是凸优化(Convex Optimization)的一种,貌似近些年来比较热,反正这个东西常常出现在我看的论文中。论文里一般是把一个问题转化为SDP,然后极不负责任的扔了一句可以使用SeDuMi等工具箱解决就完事了,搞的本人非常迷茫,于是决定一探究竟,谁知还搞了个意外收获,那就是YALMIP工具箱。SeDuMi和YALMIP都是Matlab的工具箱,下载和安装请参见它们的主页。下面我就分别谈谈怎么样将两个工具箱应用于SDP求解吧。

SDP问题的对偶原型及求解步骤

下面就是一个典型的SDP问题:

mincTys.t.A1y=b1A2yb2F0+y1F1++ypFp0

目标函数是线性的,有一个等式约束,有一个不等式约束,最后一个是LMI(Linear Matrix Inequality,线性矩阵不等式)约束。使用SeDuMi来解决此类问题,我们就要自行构造调用SeDuMi的核心函数sedumi(Att,bt,ct,K)的四个参数。

At(:,i)=vec(Fi)fori=1,,p

Att=[A1;A2;At]

bt=c

ct=[b1;b2;vec(F0)]

等式约束的个数:  K.f=size(A1,1)

不等式约束的个数:  K.l=size(A2,1)

LMI中矩阵的阶数:  K.s=size(F0,1)

这样,我们就可以调用 [x,y,info]=sedumi(Att,bt,ct,K) 来求解了,其中的y即为优化后得到的最优解。

一个典型的例子

这里举一个简单的例子,并给出Matlab的实际代码,以便能更好地理解运用上节的知识。SDP的一个最简单的应用就是最大化矩阵的特征值问题。如我们要找 y1,y2,y3 使矩阵 F=F0+y1F1+y2F2+y3F3 的特征值最大化,其中 F0,F1,F2,F3 分别为:

F0=20.50.60.520.40.60.43,F1=010100000,F2=001000100,F3=000001010

同时,我们对 y1,y2,y3 也给出一个不等式限制和一个等式限制:

0.7y11,0y20.3,y30

y1+y2+y3=1

那么这个问题可以描述成以下形式:

mints.t.A1y=b1A2yb2tI(F0+y1F1+y2F2+y3F3)0

其中 y,A1,A2,b1,b2 的取值分别为:

y=[y1,y2,y3,t]T,A1=[1,1,1,0]b1=1,b2=[0.7,1,0,0.3,0]TA2=11000001100000100000

下面我们就可以使用sedumi函数进行优化求解了,给出Matlab代码:

      
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
      
A1 = [1 1 1 0];
A2 = [1 0 0 0; -1 0 0 0; 0 1 0 0; 0 -1 0 0; 0 0 1 0];
b1 = 1;
b2 = [0.7 -1 0 -0.3 0]';
F0 = [2 -0.5 -0.6; -0.5 2 0.4; -0.6 0.4 3];
F1 = [0 1 0; 1 0 0; 0 0 0];
F2 = [0 0 1; 0 0 0; 1 0 0];
F3 = [0 0 0; 0 0 1; 0 1 0];
F4 = eye(3);
At = -[vec(F1) vec(F2) vec(F3) vec(F4)];
Att = [A1; -A2; At];
bt = -[0 0 0 1]';
ct = [b1; -b2; vec(F0)];
K.f = size(A1,1);
K.l = size(A2,1);
K.s = size(F0,1);
[x,y,info] = sedumi(Att,bt,ct,K);
y

最后得到的y即为最优解,它的前三个分量就是我们想要的答案。如下图所示:

YALMIP一出,谁与争锋

我们从上面也可以看到,SeDuMi的求解过程还是比较复杂的,不仅需要将优化问题先化成SDP的标准形式,而且参数的配置也相当费功夫,很不直观!在搜索SeDuMi的过程中,我又发现了一个叫YALMIP的工具箱,它的命名挺有意思,Yet Another LMI Package,又一个LMI包,呵呵,不过它可不是徒有虚名啊!简单的说,它可以非常直观的将目标函数和约束条件赋给它的核心函数solvesdp(Constraint,Objective),下面我们就看看解决同样的问题YALMIP是怎么操作的,废话不说了,直接上Matlab代码:

      
1
2
3
4
5
6
7
8
9
10
11
12
13
      
t = sdpvar(1); % sdpvar声明变量
y = sdpvar(3,1,'full');
F0 = [2 -0.5 -0.6; -0.5 2 0.4; -0.6 0.4 3];
F1 = [0 1 0; 1 0 0; 0 0 0];
F2 = [0 0 1; 0 0 0; 1 0 0];
F3 = [0 0 0; 0 0 1; 0 1 0];
a = [sum(y)==1]; % 等式约束
b = [0.7<=y(1)<=1, 0<=y(2)<=0.3, y(3)>=0]; %不等式约束
c = [t*eye(3)-(F0 + y(1)*F1 + y(2)*F2 + y(3)*F3)>=0]; % LMI约束
obj = t;
constraint = [a,b,c];
solvesdp(constraint,obj);
double(y)

结果如下图所示:

可以看到两者的结果基本是一致的,当然,我怀疑YALMIP在操作的过程中有调用SeDuMi的可能性,但是不管怎么说,YALMIP的代码则更直观,更容易理解,甚至连双向不等式都可以直接书写,这都是明显的,可见它的牛逼,所以必然果断抛弃其他一切优化工具箱,你的意见呢?嘿嘿~

P.S. 最近总是学术文章,我也有点受不鸟了~写这玩意累啊,歇着去了。。。

Posted by 马斯特 - 9月 11日 2010
如需转载,请注明: 本文来自 进击的马斯特

模式识别
SDP,  SeDuMi,  YALMIP,  凸优化,  半定规划

这篇关于求解SDP问题—使用SeDuMi和YALMIP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675962

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没