求解SDP问题—使用SeDuMi和YALMIP

2024-02-04 01:08

本文主要是介绍求解SDP问题—使用SeDuMi和YALMIP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://pinkyjie.com/2010/09/11/solve-sdp-using-sedumi-yalmip/

求解SDP问题—使用SeDuMi和YALMIP

9月 11日 2010

SDP(SemiDefinite Programing,半定规划)是凸优化(Convex Optimization)的一种,貌似近些年来比较热,反正这个东西常常出现在我看的论文中。论文里一般是把一个问题转化为SDP,然后极不负责任的扔了一句可以使用SeDuMi等工具箱解决就完事了,搞的本人非常迷茫,于是决定一探究竟,谁知还搞了个意外收获,那就是YALMIP工具箱。SeDuMi和YALMIP都是Matlab的工具箱,下载和安装请参见它们的主页。下面我就分别谈谈怎么样将两个工具箱应用于SDP求解吧。

SDP问题的对偶原型及求解步骤

下面就是一个典型的SDP问题:

mincTys.t.A1y=b1A2yb2F0+y1F1++ypFp0

目标函数是线性的,有一个等式约束,有一个不等式约束,最后一个是LMI(Linear Matrix Inequality,线性矩阵不等式)约束。使用SeDuMi来解决此类问题,我们就要自行构造调用SeDuMi的核心函数sedumi(Att,bt,ct,K)的四个参数。

At(:,i)=vec(Fi)fori=1,,p

Att=[A1;A2;At]

bt=c

ct=[b1;b2;vec(F0)]

等式约束的个数:  K.f=size(A1,1)

不等式约束的个数:  K.l=size(A2,1)

LMI中矩阵的阶数:  K.s=size(F0,1)

这样,我们就可以调用 [x,y,info]=sedumi(Att,bt,ct,K) 来求解了,其中的y即为优化后得到的最优解。

一个典型的例子

这里举一个简单的例子,并给出Matlab的实际代码,以便能更好地理解运用上节的知识。SDP的一个最简单的应用就是最大化矩阵的特征值问题。如我们要找 y1,y2,y3 使矩阵 F=F0+y1F1+y2F2+y3F3 的特征值最大化,其中 F0,F1,F2,F3 分别为:

F0=20.50.60.520.40.60.43,F1=010100000,F2=001000100,F3=000001010

同时,我们对 y1,y2,y3 也给出一个不等式限制和一个等式限制:

0.7y11,0y20.3,y30

y1+y2+y3=1

那么这个问题可以描述成以下形式:

mints.t.A1y=b1A2yb2tI(F0+y1F1+y2F2+y3F3)0

其中 y,A1,A2,b1,b2 的取值分别为:

y=[y1,y2,y3,t]T,A1=[1,1,1,0]b1=1,b2=[0.7,1,0,0.3,0]TA2=11000001100000100000

下面我们就可以使用sedumi函数进行优化求解了,给出Matlab代码:

      
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
      
A1 = [1 1 1 0];
A2 = [1 0 0 0; -1 0 0 0; 0 1 0 0; 0 -1 0 0; 0 0 1 0];
b1 = 1;
b2 = [0.7 -1 0 -0.3 0]';
F0 = [2 -0.5 -0.6; -0.5 2 0.4; -0.6 0.4 3];
F1 = [0 1 0; 1 0 0; 0 0 0];
F2 = [0 0 1; 0 0 0; 1 0 0];
F3 = [0 0 0; 0 0 1; 0 1 0];
F4 = eye(3);
At = -[vec(F1) vec(F2) vec(F3) vec(F4)];
Att = [A1; -A2; At];
bt = -[0 0 0 1]';
ct = [b1; -b2; vec(F0)];
K.f = size(A1,1);
K.l = size(A2,1);
K.s = size(F0,1);
[x,y,info] = sedumi(Att,bt,ct,K);
y

最后得到的y即为最优解,它的前三个分量就是我们想要的答案。如下图所示:

YALMIP一出,谁与争锋

我们从上面也可以看到,SeDuMi的求解过程还是比较复杂的,不仅需要将优化问题先化成SDP的标准形式,而且参数的配置也相当费功夫,很不直观!在搜索SeDuMi的过程中,我又发现了一个叫YALMIP的工具箱,它的命名挺有意思,Yet Another LMI Package,又一个LMI包,呵呵,不过它可不是徒有虚名啊!简单的说,它可以非常直观的将目标函数和约束条件赋给它的核心函数solvesdp(Constraint,Objective),下面我们就看看解决同样的问题YALMIP是怎么操作的,废话不说了,直接上Matlab代码:

      
1
2
3
4
5
6
7
8
9
10
11
12
13
      
t = sdpvar(1); % sdpvar声明变量
y = sdpvar(3,1,'full');
F0 = [2 -0.5 -0.6; -0.5 2 0.4; -0.6 0.4 3];
F1 = [0 1 0; 1 0 0; 0 0 0];
F2 = [0 0 1; 0 0 0; 1 0 0];
F3 = [0 0 0; 0 0 1; 0 1 0];
a = [sum(y)==1]; % 等式约束
b = [0.7<=y(1)<=1, 0<=y(2)<=0.3, y(3)>=0]; %不等式约束
c = [t*eye(3)-(F0 + y(1)*F1 + y(2)*F2 + y(3)*F3)>=0]; % LMI约束
obj = t;
constraint = [a,b,c];
solvesdp(constraint,obj);
double(y)

结果如下图所示:

可以看到两者的结果基本是一致的,当然,我怀疑YALMIP在操作的过程中有调用SeDuMi的可能性,但是不管怎么说,YALMIP的代码则更直观,更容易理解,甚至连双向不等式都可以直接书写,这都是明显的,可见它的牛逼,所以必然果断抛弃其他一切优化工具箱,你的意见呢?嘿嘿~

P.S. 最近总是学术文章,我也有点受不鸟了~写这玩意累啊,歇着去了。。。

Posted by 马斯特 - 9月 11日 2010
如需转载,请注明: 本文来自 进击的马斯特

模式识别
SDP,  SeDuMi,  YALMIP,  凸优化,  半定规划

这篇关于求解SDP问题—使用SeDuMi和YALMIP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675962

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读