求解SDP问题—使用SeDuMi和YALMIP

2024-02-04 01:08

本文主要是介绍求解SDP问题—使用SeDuMi和YALMIP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://pinkyjie.com/2010/09/11/solve-sdp-using-sedumi-yalmip/

求解SDP问题—使用SeDuMi和YALMIP

9月 11日 2010

SDP(SemiDefinite Programing,半定规划)是凸优化(Convex Optimization)的一种,貌似近些年来比较热,反正这个东西常常出现在我看的论文中。论文里一般是把一个问题转化为SDP,然后极不负责任的扔了一句可以使用SeDuMi等工具箱解决就完事了,搞的本人非常迷茫,于是决定一探究竟,谁知还搞了个意外收获,那就是YALMIP工具箱。SeDuMi和YALMIP都是Matlab的工具箱,下载和安装请参见它们的主页。下面我就分别谈谈怎么样将两个工具箱应用于SDP求解吧。

SDP问题的对偶原型及求解步骤

下面就是一个典型的SDP问题:

mincTys.t.A1y=b1A2yb2F0+y1F1++ypFp0

目标函数是线性的,有一个等式约束,有一个不等式约束,最后一个是LMI(Linear Matrix Inequality,线性矩阵不等式)约束。使用SeDuMi来解决此类问题,我们就要自行构造调用SeDuMi的核心函数sedumi(Att,bt,ct,K)的四个参数。

At(:,i)=vec(Fi)fori=1,,p

Att=[A1;A2;At]

bt=c

ct=[b1;b2;vec(F0)]

等式约束的个数:  K.f=size(A1,1)

不等式约束的个数:  K.l=size(A2,1)

LMI中矩阵的阶数:  K.s=size(F0,1)

这样,我们就可以调用 [x,y,info]=sedumi(Att,bt,ct,K) 来求解了,其中的y即为优化后得到的最优解。

一个典型的例子

这里举一个简单的例子,并给出Matlab的实际代码,以便能更好地理解运用上节的知识。SDP的一个最简单的应用就是最大化矩阵的特征值问题。如我们要找 y1,y2,y3 使矩阵 F=F0+y1F1+y2F2+y3F3 的特征值最大化,其中 F0,F1,F2,F3 分别为:

F0=20.50.60.520.40.60.43,F1=010100000,F2=001000100,F3=000001010

同时,我们对 y1,y2,y3 也给出一个不等式限制和一个等式限制:

0.7y11,0y20.3,y30

y1+y2+y3=1

那么这个问题可以描述成以下形式:

mints.t.A1y=b1A2yb2tI(F0+y1F1+y2F2+y3F3)0

其中 y,A1,A2,b1,b2 的取值分别为:

y=[y1,y2,y3,t]T,A1=[1,1,1,0]b1=1,b2=[0.7,1,0,0.3,0]TA2=11000001100000100000

下面我们就可以使用sedumi函数进行优化求解了,给出Matlab代码:

      
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
      
A1 = [1 1 1 0];
A2 = [1 0 0 0; -1 0 0 0; 0 1 0 0; 0 -1 0 0; 0 0 1 0];
b1 = 1;
b2 = [0.7 -1 0 -0.3 0]';
F0 = [2 -0.5 -0.6; -0.5 2 0.4; -0.6 0.4 3];
F1 = [0 1 0; 1 0 0; 0 0 0];
F2 = [0 0 1; 0 0 0; 1 0 0];
F3 = [0 0 0; 0 0 1; 0 1 0];
F4 = eye(3);
At = -[vec(F1) vec(F2) vec(F3) vec(F4)];
Att = [A1; -A2; At];
bt = -[0 0 0 1]';
ct = [b1; -b2; vec(F0)];
K.f = size(A1,1);
K.l = size(A2,1);
K.s = size(F0,1);
[x,y,info] = sedumi(Att,bt,ct,K);
y

最后得到的y即为最优解,它的前三个分量就是我们想要的答案。如下图所示:

YALMIP一出,谁与争锋

我们从上面也可以看到,SeDuMi的求解过程还是比较复杂的,不仅需要将优化问题先化成SDP的标准形式,而且参数的配置也相当费功夫,很不直观!在搜索SeDuMi的过程中,我又发现了一个叫YALMIP的工具箱,它的命名挺有意思,Yet Another LMI Package,又一个LMI包,呵呵,不过它可不是徒有虚名啊!简单的说,它可以非常直观的将目标函数和约束条件赋给它的核心函数solvesdp(Constraint,Objective),下面我们就看看解决同样的问题YALMIP是怎么操作的,废话不说了,直接上Matlab代码:

      
1
2
3
4
5
6
7
8
9
10
11
12
13
      
t = sdpvar(1); % sdpvar声明变量
y = sdpvar(3,1,'full');
F0 = [2 -0.5 -0.6; -0.5 2 0.4; -0.6 0.4 3];
F1 = [0 1 0; 1 0 0; 0 0 0];
F2 = [0 0 1; 0 0 0; 1 0 0];
F3 = [0 0 0; 0 0 1; 0 1 0];
a = [sum(y)==1]; % 等式约束
b = [0.7<=y(1)<=1, 0<=y(2)<=0.3, y(3)>=0]; %不等式约束
c = [t*eye(3)-(F0 + y(1)*F1 + y(2)*F2 + y(3)*F3)>=0]; % LMI约束
obj = t;
constraint = [a,b,c];
solvesdp(constraint,obj);
double(y)

结果如下图所示:

可以看到两者的结果基本是一致的,当然,我怀疑YALMIP在操作的过程中有调用SeDuMi的可能性,但是不管怎么说,YALMIP的代码则更直观,更容易理解,甚至连双向不等式都可以直接书写,这都是明显的,可见它的牛逼,所以必然果断抛弃其他一切优化工具箱,你的意见呢?嘿嘿~

P.S. 最近总是学术文章,我也有点受不鸟了~写这玩意累啊,歇着去了。。。

Posted by 马斯特 - 9月 11日 2010
如需转载,请注明: 本文来自 进击的马斯特

模式识别
SDP,  SeDuMi,  YALMIP,  凸优化,  半定规划

这篇关于求解SDP问题—使用SeDuMi和YALMIP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675962

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —