求解SDP问题—使用SeDuMi和YALMIP

2024-02-04 01:08

本文主要是介绍求解SDP问题—使用SeDuMi和YALMIP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://pinkyjie.com/2010/09/11/solve-sdp-using-sedumi-yalmip/

求解SDP问题—使用SeDuMi和YALMIP

9月 11日 2010

SDP(SemiDefinite Programing,半定规划)是凸优化(Convex Optimization)的一种,貌似近些年来比较热,反正这个东西常常出现在我看的论文中。论文里一般是把一个问题转化为SDP,然后极不负责任的扔了一句可以使用SeDuMi等工具箱解决就完事了,搞的本人非常迷茫,于是决定一探究竟,谁知还搞了个意外收获,那就是YALMIP工具箱。SeDuMi和YALMIP都是Matlab的工具箱,下载和安装请参见它们的主页。下面我就分别谈谈怎么样将两个工具箱应用于SDP求解吧。

SDP问题的对偶原型及求解步骤

下面就是一个典型的SDP问题:

mincTys.t.A1y=b1A2yb2F0+y1F1++ypFp0

目标函数是线性的,有一个等式约束,有一个不等式约束,最后一个是LMI(Linear Matrix Inequality,线性矩阵不等式)约束。使用SeDuMi来解决此类问题,我们就要自行构造调用SeDuMi的核心函数sedumi(Att,bt,ct,K)的四个参数。

At(:,i)=vec(Fi)fori=1,,p

Att=[A1;A2;At]

bt=c

ct=[b1;b2;vec(F0)]

等式约束的个数:  K.f=size(A1,1)

不等式约束的个数:  K.l=size(A2,1)

LMI中矩阵的阶数:  K.s=size(F0,1)

这样,我们就可以调用 [x,y,info]=sedumi(Att,bt,ct,K) 来求解了,其中的y即为优化后得到的最优解。

一个典型的例子

这里举一个简单的例子,并给出Matlab的实际代码,以便能更好地理解运用上节的知识。SDP的一个最简单的应用就是最大化矩阵的特征值问题。如我们要找 y1,y2,y3 使矩阵 F=F0+y1F1+y2F2+y3F3 的特征值最大化,其中 F0,F1,F2,F3 分别为:

F0=20.50.60.520.40.60.43,F1=010100000,F2=001000100,F3=000001010

同时,我们对 y1,y2,y3 也给出一个不等式限制和一个等式限制:

0.7y11,0y20.3,y30

y1+y2+y3=1

那么这个问题可以描述成以下形式:

mints.t.A1y=b1A2yb2tI(F0+y1F1+y2F2+y3F3)0

其中 y,A1,A2,b1,b2 的取值分别为:

y=[y1,y2,y3,t]T,A1=[1,1,1,0]b1=1,b2=[0.7,1,0,0.3,0]TA2=11000001100000100000

下面我们就可以使用sedumi函数进行优化求解了,给出Matlab代码:

      
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
      
A1 = [1 1 1 0];
A2 = [1 0 0 0; -1 0 0 0; 0 1 0 0; 0 -1 0 0; 0 0 1 0];
b1 = 1;
b2 = [0.7 -1 0 -0.3 0]';
F0 = [2 -0.5 -0.6; -0.5 2 0.4; -0.6 0.4 3];
F1 = [0 1 0; 1 0 0; 0 0 0];
F2 = [0 0 1; 0 0 0; 1 0 0];
F3 = [0 0 0; 0 0 1; 0 1 0];
F4 = eye(3);
At = -[vec(F1) vec(F2) vec(F3) vec(F4)];
Att = [A1; -A2; At];
bt = -[0 0 0 1]';
ct = [b1; -b2; vec(F0)];
K.f = size(A1,1);
K.l = size(A2,1);
K.s = size(F0,1);
[x,y,info] = sedumi(Att,bt,ct,K);
y

最后得到的y即为最优解,它的前三个分量就是我们想要的答案。如下图所示:

YALMIP一出,谁与争锋

我们从上面也可以看到,SeDuMi的求解过程还是比较复杂的,不仅需要将优化问题先化成SDP的标准形式,而且参数的配置也相当费功夫,很不直观!在搜索SeDuMi的过程中,我又发现了一个叫YALMIP的工具箱,它的命名挺有意思,Yet Another LMI Package,又一个LMI包,呵呵,不过它可不是徒有虚名啊!简单的说,它可以非常直观的将目标函数和约束条件赋给它的核心函数solvesdp(Constraint,Objective),下面我们就看看解决同样的问题YALMIP是怎么操作的,废话不说了,直接上Matlab代码:

      
1
2
3
4
5
6
7
8
9
10
11
12
13
      
t = sdpvar(1); % sdpvar声明变量
y = sdpvar(3,1,'full');
F0 = [2 -0.5 -0.6; -0.5 2 0.4; -0.6 0.4 3];
F1 = [0 1 0; 1 0 0; 0 0 0];
F2 = [0 0 1; 0 0 0; 1 0 0];
F3 = [0 0 0; 0 0 1; 0 1 0];
a = [sum(y)==1]; % 等式约束
b = [0.7<=y(1)<=1, 0<=y(2)<=0.3, y(3)>=0]; %不等式约束
c = [t*eye(3)-(F0 + y(1)*F1 + y(2)*F2 + y(3)*F3)>=0]; % LMI约束
obj = t;
constraint = [a,b,c];
solvesdp(constraint,obj);
double(y)

结果如下图所示:

可以看到两者的结果基本是一致的,当然,我怀疑YALMIP在操作的过程中有调用SeDuMi的可能性,但是不管怎么说,YALMIP的代码则更直观,更容易理解,甚至连双向不等式都可以直接书写,这都是明显的,可见它的牛逼,所以必然果断抛弃其他一切优化工具箱,你的意见呢?嘿嘿~

P.S. 最近总是学术文章,我也有点受不鸟了~写这玩意累啊,歇着去了。。。

Posted by 马斯特 - 9月 11日 2010
如需转载,请注明: 本文来自 进击的马斯特

模式识别
SDP,  SeDuMi,  YALMIP,  凸优化,  半定规划

这篇关于求解SDP问题—使用SeDuMi和YALMIP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675962

相关文章

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹