跟着iMeta学做图|circlize绘制环状热图展示细菌功能聚类分析

本文主要是介绍跟着iMeta学做图|circlize绘制环状热图展示细菌功能聚类分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原始教程链接 

https://github.com/iMetaScience/iMetaPlot/tree/main/221116circlize

如果你使用本代码,请引用:

Jiao Xi et al. 2022. Microbial community roles and chemical mechanisms in the parasitic development of Orobanche cumana. iMeta https://doi.org/10.1002/imt2.31

写在前面

热图 (Heat map) 可以在微生物组研究中展示展示细菌功能聚类分析的结果,而环状热图是热图的一种表现形式。本期我们挑选2022年6月13日刊登在iMeta上的Microbial community roles and chemical mechanisms in the parasitic development of Orobanche cumana- iMeta | 西农林雁冰/ James M. Tiedje等揭示菌群对寄生植物列当的调控作用,选择文章的Figure 2B进行复现,基于顾祖光博士开发的circlize包,讲解和探讨环形热图的绘制方法,先上原图:

939bea14a50be39019d918a1cc326004.gif

8c564ee0d902770ff9bfb2f0a7c92de5.png

接下来,我们将通过详尽的代码逐步拆解原图,最终实现对原图的复现。

R包检测和安装

01

安装核心R包circlize以及一些功能辅助性R包,并载入所有R包。

# 检查开发者工具devtools,如没有则安装
if (!require("devtools"))install.packages("devtools")
# 加载开发者工具devtools
library(devtools)
# 检查circlize包,没有则通过github安装最新版
if (!require("circlize"))install_github("jokergoo/circlize")
if (!require("tidyverse"))install.packages('tidyverse') 
if (!require("ComplexHeatmap"))install.packages('ComplexHeatmap') 
if (!require("tidyverse"))install.packages('tidyverse') 
# 加载包
library(circlize)
library(tidyverse)
library(ComplexHeatmap)
library(gridBase)

生成测试数据

02

由于没有在补充文件里找到原文相关数据,在这里我们通过生成随机数据来替代。

#生成KEGG数据矩阵(矩阵1)
data1<-matrix(rnorm(670,mean=0.5),nrow=67)
rownames(data1)<-c("K01446","K01971","K01142","K01151","K01246","K00784","K02031","K01644","K02037","K02065","K01448","K01890","K00266","K01725","K00806","K00231","K01737","K00858","K00019","K01715","K01692","K00249","K00023","K00626","K00101","K00803","K01710","K01791","K01176","K00799","K00800","K01667","K01668","K01712","K00053","K01696","K01697","K00108","K00639","K01489","K00226","K01488","K02339","K01428","K01438","K02124","K02275","K01796","K00632","K00648","K00849","K01805","K01685","K00065","K00090","K01619","K01834","K00121","K02182","K02082","K02005","K01266","K01990","K01463","K02217","K01174","K02003")
colnames(data1)<-c(paste('H',seq(1:5),sep = ""),paste("PS",seq(1:5),sep = ""))
#生成EC数据矩阵(矩阵2)
data2<-matrix(rnorm(130,mean=1),nrow = 13)
rownames(data2)<-c("2.1.1.165","1.1.5.-","4.2.99.20","1.1.1.86","1.1.99.1","1.1.2.3","4.2.1.28","4.2.1.82","5.4.1.3","1.13.12.16","5.1.99.4","1.17.4.1","1.8.4.-")
colnames(data2)<-c(paste('H',seq(1:5),sep = ""),paste("PS",seq(1:5),sep = ""))
#生成细菌数据矩阵(矩阵3)
data3<-matrix(rnorm(20,mean=1),nrow = 10)
supdata<-matrix(0,nrow = 10,ncol = 8)
#由于该矩阵为10×2矩阵,需补充10×8全为0的矩阵,使得矩阵123均为m×10的矩阵
data3<-cbind(data3,supdata)
rownames(data3)<-c("Proteobacteria","Actinobacteria","Acidobacteria","Bacteroidetes","Gemmatimonadetes","Chloroflexi","Planctomycetes","Firmicutes","Verrucomicrobia","unidentified_Acidobacteria")
#将三个矩阵按行合并
mat_data<-rbind(data1,data2,data3)
#按行将矩阵反转,这样矩阵3的非零数据会出现在内圈
mat_dataR<-mat_data%>% as.data.frame() %>% rowwise() %>% rev() %>% as.matrix() 
rownames(mat_dataR)<-rownames(mat_data)

6cbed2cca8fbcec940cdd5ed9bd68a9e.png

环形热图预览

03

开始作图,首先画一个最基本的环形热图:

pdf("plot1.pdf",width = 8, height = 6)
#设置热图颜色范围:
colpattern = colorRamp2(c(-1, 0, 1), c("#2574AA", "white", "#ED7B79"))
#设置扇区,这里划分了三个扇区,KEGG,EC和细菌种类。
level_test<-c(rep("KEGG",67),rep("EC",13),rep("SP",10)) %>% factor()#画图
circos.heatmap(mat_dataR, col = colpattern, rownames.side = "outside", cluster = TRUE)
circos.clear()dev.off()

935ed5cd0d448eb356f592d4ddabb600.png

04

添加扇区分化,单元格边框,轨道高度,扇区间间隔:

pdf("plot2.pdf",width = 8, height = 6)
circos.par(gap.after = c(10, 10, 12))
circos.heatmap(mat_dataR, split = level_test, col = colpattern, rownames.side = "outside", cluster = TRUE,cell.lwd=0.8,cell.border="white",track.height = 0.2)
circos.clear()dev.off()

16e6d132267b54781c860773c86b2bd0.png

05

添加矩阵的列名。circos.heatmap()不直接支持矩阵的列名,可以通过自定义panel.fun函数轻松添加:

pdf("plot3.pdf",width = 8, height = 6)
circos.par(gap.after = c(10, 10, 12))
circos.heatmap(mat_dataR, split = level_test, col = colpattern, rownames.side = "outside", cluster = TRUE,cell.lwd=0.8,cell.border="white",track.height = 0.2) 
circos.track(track.index = get.current.track.index(), panel.fun = function(x, y) {if(CELL_META$sector.numeric.index == 1) { # the last sectorcn = colnames(mat_dataR)n = length(cn)circos.text(rep(CELL_META$cell.xlim[2], n) + convert_x(1, "mm"), 1:n - 0.5, cn, cex = 0.3, adj = c(0, 0.5), facing = "inside")}
}, bg.border = NA)circos.track(track.index = get.current.track.index(), panel.fun = function(x, y) {if(CELL_META$sector.numeric.index == 3) { # the last sectorcn = colnames(mat_dataR)n = length(cn)circos.text(rep(CELL_META$cell.xlim[2], n) + convert_x(1, "mm"), 1:n - 0.5, cn, cex = 0.3, adj = c(0, 0.5), facing = "inside")}
}, bg.border = NA)
circos.clear()dev.off()

24f54bb23849419100e586d834eb0d93.png

06

接下来添加连接线,连接线表示位置和位置的对应关系。首先生成数据:

#灰色连接线数据
df_link = data.frame(from_index = sample(nrow(mat_dataR), 30),to_index = sample(nrow(mat_dataR), 30)
)
#红色连接线数据
red_df_link<-data.frame(from_index = c(86,87,82),to_index = c(2,15,36))
#蓝色连接线数据
blue_df_link<-data.frame(from_index = c(84,86,90),to_index = c(72,76,69))

5bed0fb9a9e2a75c7ccdc92953c7bbfa.png

07

接下来开始添加link:

pdf("plot4.pdf",width = 8, height = 6)
circos.par(gap.after = c(10, 10, 12))
circos.heatmap(mat_dataR, split = level_test, col = colpattern, rownames.side = "outside", cluster = TRUE,cell.lwd=0.8,cell.border="white",track.height = 0.2) 
circos.track(track.index = get.current.track.index(), panel.fun = function(x, y) {if(CELL_META$sector.numeric.index == 1) { # the last sectorcn = colnames(mat_dataR)n = length(cn)circos.text(rep(CELL_META$cell.xlim[2], n) + convert_x(1, "mm"), 1:n - 0.5, cn, cex = 0.3, adj = c(0, 0.5), facing = "inside")}
}, bg.border = NA)circos.track(track.index = get.current.track.index(), panel.fun = function(x, y) {if(CELL_META$sector.numeric.index == 3) { # the last sectorcn = colnames(mat_dataR)n = length(cn)circos.text(rep(CELL_META$cell.xlim[2], n) + convert_x(1, "mm"), 1:n - 0.5, cn, cex = 0.3, adj = c(0, 0.5), facing = "inside")}
}, bg.border = NA)for(i in seq_len(nrow(df_link))) {circos.heatmap.link(df_link$from_index[i],df_link$to_index[i],col = "grey")
}for(i in seq_len(nrow(red_df_link))) {circos.heatmap.link(red_df_link$from_index[i],red_df_link$to_index[i],col = "red")
}for(i in seq_len(nrow(blue_df_link))) {circos.heatmap.link(blue_df_link$from_index[i],blue_df_link$to_index[i],col = "blue")
}
circos.clear()dev.off()

13bd8f48fe8ee022b4a586671417a515.png

08

添加图例,circos.heatmap()本身是不支持添加图例的,但我们可以利用gridBase和ComplexHeatmap包添加图例:

pdf("plot5.pdf",width = 8, height = 6)
plot.new()
circle_size = unit(1, "snpc") # snpc unit gives you a square regionpushViewport(viewport(x = 0, y = 0.5, width = circle_size, height = circle_size,just = c("left", "center")))
par(omi = gridOMI(), new = TRUE)
circos.par(gap.after = c(10, 10, 12))
circos.heatmap(mat_dataR, split = level_test, col = colpattern, rownames.side = "outside", cluster = TRUE,cell.lwd=0.8,cell.border="white",track.height = 0.2) 
circos.track(track.index = get.current.track.index(), panel.fun = function(x, y) {if(CELL_META$sector.numeric.index == 1) { # the last sectorcn = colnames(mat_dataR)n = length(cn)circos.text(rep(CELL_META$cell.xlim[2], n) + convert_x(1, "mm"), 1:n - 0.5, cn, cex = 0.3, adj = c(0, 0.5), facing = "inside")}
}, bg.border = NA)circos.track(track.index = get.current.track.index(), panel.fun = function(x, y) {if(CELL_META$sector.numeric.index == 3) { # the last sectorcn = colnames(mat_dataR)n = length(cn)circos.text(rep(CELL_META$cell.xlim[2], n) + convert_x(1, "mm"), 1:n - 0.5, cn, cex = 0.3, adj = c(0, 0.5), facing = "inside")}
}, bg.border = NA)for(i in seq_len(nrow(df_link))) {circos.heatmap.link(df_link$from_index[i],df_link$to_index[i],col = "grey")
}for(i in seq_len(nrow(red_df_link))) {circos.heatmap.link(red_df_link$from_index[i],red_df_link$to_index[i],col = "red")
}for(i in seq_len(nrow(blue_df_link))) {circos.heatmap.link(blue_df_link$from_index[i],blue_df_link$to_index[i],col = "blue")
}
circos.clear()
upViewport()h = dev.size()[2]
lgd = Legend(title = "", col_fun = colpattern)
draw(lgd, x = circle_size, just = "left")dev.off()

49334a7f3203152529d925d27b46e01d.png

09

距离成功只差一步啦,最后用AI进行修图,处理掉不合理的部分。成品图如下:

c3044785366a61daa8ffd47802140514.jpeg

完整代码

# 检查开发者工具devtools,如没有则安装
if (!require("devtools"))install.packages("devtools")
# 加载开发者工具devtools
library(devtools)
# 检查circlize包,没有则通过github安装最新版
if (!require("circlize"))install_github("jokergoo/circlize")
if (!require("tidyverse"))install.packages('tidyverse') 
if (!require("ComplexHeatmap"))install.packages('ComplexHeatmap') 
if (!require("tidyverse"))install.packages('tidyverse') 
# 加载包
library(circlize)
library(tidyverse)
library(ComplexHeatmap)
library(gridBase)#part1 生成数据
set.seed(123)
#生成KEGG数据矩阵(矩阵1)
data1<-matrix(rnorm(670,mean=0.5),nrow=67)
rownames(data1)<-c("K01446","K01971","K01142","K01151","K01246","K00784","K02031","K01644","K02037","K02065","K01448","K01890","K00266","K01725","K00806","K00231","K01737","K00858","K00019","K01715","K01692","K00249","K00023","K00626","K00101","K00803","K01710","K01791","K01176","K00799","K00800","K01667","K01668","K01712","K00053","K01696","K01697","K00108","K00639","K01489","K00226","K01488","K02339","K01428","K01438","K02124","K02275","K01796","K00632","K00648","K00849","K01805","K01685","K00065","K00090","K01619","K01834","K00121","K02182","K02082","K02005","K01266","K01990","K01463","K02217","K01174","K02003")
colnames(data1)<-c(paste('H',seq(1:5),sep = ""),paste("PS",seq(1:5),sep = ""))
#生成EC数据矩阵(矩阵2)
data2<-matrix(rnorm(130,mean=1),nrow = 13)
rownames(data2)<-c("2.1.1.165","1.1.5.-","4.2.99.20","1.1.1.86","1.1.99.1","1.1.2.3","4.2.1.28","4.2.1.82","5.4.1.3","1.13.12.16","5.1.99.4","1.17.4.1","1.8.4.-")
colnames(data2)<-c(paste('H',seq(1:5),sep = ""),paste("PS",seq(1:5),sep = ""))
#生成细菌数据矩阵(矩阵3)
data3<-matrix(rnorm(20,mean=1),nrow = 10)
supdata<-matrix(0,nrow = 10,ncol = 8)
#由于该矩阵为10×2矩阵,需补充10×8全为0的矩阵,使得矩阵123均为m×10的矩阵
data3<-cbind(data3,supdata)
rownames(data3)<-c("Proteobacteria","Actinobacteria","Acidobacteria","Bacteroidetes","Gemmatimonadetes","Chloroflexi","Planctomycetes","Firmicutes","Verrucomicrobia","unidentified_Acidobacteria")
#将三个矩阵按行合并
mat_data<-rbind(data1,data2,data3)
#按行将矩阵反转,这样矩阵3的非零数据会出现在内圈
mat_dataR<-mat_data%>% as.data.frame() %>% rowwise() %>% rev() %>% as.matrix() 
rownames(mat_dataR)<-rownames(mat_data)
#设置热图颜色范围
colpattern = colorRamp2(c(-1, 0, 1), c("#2574AA", "white", "#ED7B79"))
#设置扇区,这里划分了三个扇区,KEGG,EC和细菌种类
level_test<-c(rep("KEGG",67),rep("EC",13),rep("SP",10)) %>% factor()
#level_test<-row.names(mat_dataR) %>% str_match("[k]+") %>% replace_na("EC") %>% factor()
#生成连接线数据
df_link = data.frame(from_index = sample(nrow(mat_dataR), 30),to_index = sample(nrow(mat_dataR), 30)
)
red_df_link<-data.frame(from_index = c(86,87,82),to_index = c(2,15,36))blue_df_link<-data.frame(from_index = c(84,86,90),to_index = c(72,76,69))#开始画图
pdf("Figure 2B.pdf",width = 8, height = 6)
plot.new()
circle_size = unit(1, "snpc") # snpc unit gives you a square regionpushViewport(viewport(x = 0, y = 0.5, width = circle_size, height = circle_size,just = c("left", "center")))
par(omi = gridOMI(), new = TRUE)
circos.par(gap.after = c(10, 10, 12))
circos.heatmap(mat_dataR, split = level_test, col = colpattern, rownames.side = "outside", cluster = TRUE,cell.lwd=0.8,cell.border="white",track.height = 0.2) 
circos.track(track.index = get.current.track.index(), panel.fun = function(x, y) {if(CELL_META$sector.numeric.index == 1) { # the last sectorcn = colnames(mat_dataR)n = length(cn)circos.text(rep(CELL_META$cell.xlim[2], n) + convert_x(1, "mm"), 1:n - 0.5, cn, cex = 0.3, adj = c(0, 0.5), facing = "inside")}
}, bg.border = NA)circos.track(track.index = get.current.track.index(), panel.fun = function(x, y) {if(CELL_META$sector.numeric.index == 3) { # the last sectorcn = colnames(mat_dataR)n = length(cn)circos.text(rep(CELL_META$cell.xlim[2], n) + convert_x(1, "mm"), 1:n - 0.5, cn, cex = 0.3, adj = c(0, 0.5), facing = "inside")}
}, bg.border = NA)for(i in seq_len(nrow(df_link))) {circos.heatmap.link(df_link$from_index[i],df_link$to_index[i],col = "grey")
}for(i in seq_len(nrow(red_df_link))) {circos.heatmap.link(red_df_link$from_index[i],red_df_link$to_index[i],col = "red")
}for(i in seq_len(nrow(blue_df_link))) {circos.heatmap.link(blue_df_link$from_index[i],blue_df_link$to_index[i],col = "blue")
}
circos.clear()
upViewport()h = dev.size()[2]
lgd = Legend(title = "", col_fun = colpattern)
draw(lgd, x = circle_size, just = "left")dev.off()

这篇关于跟着iMeta学做图|circlize绘制环状热图展示细菌功能聚类分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675787

相关文章

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

SpringKafka消息发布之KafkaTemplate与事务支持功能

《SpringKafka消息发布之KafkaTemplate与事务支持功能》通过本文介绍的基本用法、序列化选项、事务支持、错误处理和性能优化技术,开发者可以构建高效可靠的Kafka消息发布系统,事务支... 目录引言一、KafkaTemplate基础二、消息序列化三、事务支持机制四、错误处理与重试五、性能优

SpringIntegration消息路由之Router的条件路由与过滤功能

《SpringIntegration消息路由之Router的条件路由与过滤功能》本文详细介绍了Router的基础概念、条件路由实现、基于消息头的路由、动态路由与路由表、消息过滤与选择性路由以及错误处理... 目录引言一、Router基础概念二、条件路由实现三、基于消息头的路由四、动态路由与路由表五、消息过滤

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

Python实现自动化表单填写功能

《Python实现自动化表单填写功能》在Python中,自动化表单填写可以通过多种库和工具实现,本文将详细介绍常用的自动化表单处理工具,并对它们进行横向比较,可根据需求选择合适的工具,感兴趣的小伙伴跟... 目录1. Selenium简介适用场景示例代码优点缺点2. Playwright简介适用场景示例代码