Assisted Excitation of Activations: A Learning Technique to Improve Object Detect

本文主要是介绍Assisted Excitation of Activations: A Learning Technique to Improve Object Detect,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CVPR2019

很简单的一篇文章,不是在网络结构设计或者loss上做改进, 而是提出一种简单的学习策略。它基于curriculum learning
的思想:如果我们先学习简单的任务, 再学习复杂的任务, 我们会取得更好的效果。

以YOLO为例:

在YOLO的网络中加入这样的辅助激发层(AE)。 它根据ground truth的位置, 在原有特征图上激发对应位置(实质也是attention)。EA层具体如下:

 

其中alpha随着训练的进行,逐渐减小, 最后变成0, 这样EA的输入和输出是相同的。回到原始YOLO的训练模式。

很容易理解:alpha越大, ground truth渗透的信息就越多, 训练难度就越低; 反之越大。 alpha渐次降低, 符合直观的从易到难学习过程。

效果:整个网络架构几乎没有改变, 所以速度不变, 精度有所提升。

小结: 这个从易到难的学习策略可以借鉴。

这篇关于Assisted Excitation of Activations: A Learning Technique to Improve Object Detect的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675629

相关文章

深入探讨Java 中的 Object 类详解(一切类的根基)

《深入探讨Java中的Object类详解(一切类的根基)》本文详细介绍了Java中的Object类,作为所有类的根类,其重要性不言而喻,文章涵盖了Object类的主要方法,如toString()... 目录1. Object 类的基本概念1.1 Object 类的定义2. Object 类的主要方法3. O

【Python报错已解决】AttributeError: ‘list‘ object has no attribute ‘text‘

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 前言一、问题描述1.1 报错示例1.2 报错分析1.3 解决思路 二、解决方法2.1 方法一:检查属性名2.2 步骤二:访问列表元素的属性 三、其他解决方法四、总结 前言 在Python编程中,属性错误(At

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

error while loading shared libraries: libnuma.so.1: cannot open shared object file:

腾讯云CentOS,安装Mysql时: 1.yum remove libnuma.so.1 2.yum install numactl.x86_64

java基础总结12-面向对象8(Object类)

1 Object类介绍 Object类在JAVA里面是一个比较特殊的类,JAVA只支持单继承,子类只能从一个父类来继承,如果父类又是从另外一个父类继承过来,那他也只能有一个父类,父类再有父类,那也只能有一个,JAVA为了组织这个类组织得比较方便,它提供了一个最根上的类,相当于所有的类都是从这个类继承,这个类就叫Object。所以Object类是所有JAVA类的根基类,是所有JAVA类的老祖宗

王立平--Object-c

object-c通常写作objective-c或者obj-c,是根据C语言所衍生出来的语言,继承了C语言的特性,是扩充C的面向对象编程语言。它主要使用于MacOSX和GNUstep这两个使用OpenStep标准的系统,而在NeXTSTEP和OpenStep中它更是基本语言。Objective-C可以在gcc运作的系统写和编译,因为gcc含Objective-C的编译器。在MA

Learning Memory-guided Normality for Anomaly Detection——学习记忆引导的常态异常检测

又是一篇在自编码器框架中研究使用记忆模块的论文,可以看做19年的iccv的论文的衍生,在我的博客中对19年iccv这篇论文也做了简单介绍。韩国人写的,应该是吧,这名字听起来就像。 摘要abstract 我们解决异常检测的问题,即检测视频序列中的异常事件。基于卷积神经网络的异常检测方法通常利用代理任务(如重建输入视频帧)来学习描述正常情况的模型,而在训练时看不到异常样本,并在测试时使用重建误

Memorizing Normality to Detect Anomaly ——记忆正常以检测异常

Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection 记忆正常检测异常:记忆增强型深度自动编码器无监督异常检测 中国人挂了一堆外国人   Abstract 深度自动编码器在异常检测中得到了广泛的应用。通过对正常数据的训练,

Learning Temporal Regularity in Video Sequences——视频序列的时间规则性学习

Learning Temporal Regularity in Video Sequences CVPR2016 无监督视频异常事件检测早期工作 摘要 由于对“有意义”的定义不明确以及场景混乱,因此在较长的视频序列中感知有意义的活动是一个具有挑战性的问题。我们通过在非常有限的监督下使用多种来源学习常规运动模式的生成模型(称为规律性)来解决此问题。体来说,我们提出了两种基于自动编码器的方法,以